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Further Graphics
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GPU Ray-tracing

Ray tracing 101: “Choose the color of 
the pixel by firing a ray through and 
seeing what it hits.”

Ray tracing 102: 
“Let the pixel make up 
its own mind.”
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GPU Ray-tracing
1. Use a minimal vertex shader (no 

transforms) - all work happens in 
the fragment shader

2. Set up OpenGL with minimal 
geometry, a single quad

3. Bind coordinates to each vertex, 
let the GPU interpolate 
coordinates to every pixel

4. Implement raytracing in GLSL:
a. For each pixel, compute the ray 

from the eye through the pixel, 
using the interpolated 
coordinates to identify the pixel

b. Run the ray tracing algorithm 
for every ray
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vec3 getRayDir(
    vec3 camDir, 
    vec3 camUp, 
    vec2 texCoord) {
  vec3 camSide = normalize(
      cross(camDir, camUp));
  vec2 p = 2.0 * texCoord - 1.0;
  p.x *= iResolution.x 
      / iResolution.y;
  return normalize(
      p.x * camSide 
      + p.y * camUp 
      + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing
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Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
  float OdotD = dot(rayorig - pos, raydir);
  float OdotO = dot(rayorig - pos, rayorig - pos);
  float base = OdotD * OdotD - OdotO + radius * radius;

  if (base >= 0) {
    float root = sqrt(base);
    float t1 = -OdotD + root;
    float t2 = -OdotD - root;
    if (t1 >= 0 || t2 >= 0) {
      float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
      vec3 pt = rayorig + raydir * t;
      vec3 normal = normalize(pt - pos);
      return Hit(pt, normal, t);
    }
  }
  return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing: Sphere
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An alternative to raytracing: 
Ray-marching
An alternative to classic ray-tracing is 

ray-marching, in which we take a 
series of finite steps along the ray until 
we strike an object or exceed the 
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer, 

  “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

• often involves many steps
• too large a step size can lead to lost 

intersections (step over the object)
• an if() test in the heart of a for() loop 

is very hard for the GPU to optimize
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GPU Ray-marching:
Signed distance fields
Ray-marching can be dramatically 

improved, to impressive realtime 
GPU performance, using signed 
distance fields:

1. Fire ray into scene
2. At each step, measure distance field 

function: d(p) = [distance to nearest 
object in scene]

3. Advance ray along ray heading by 
distance d, because the nearest 
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’.  Early paper:
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
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float sphere(vec3 p, float r) {
  return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
  vec3 d = abs(p) - dim;
  return min(max(d.x,
      max(d.y, d.z)), 0.0)
      + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim) 
{
  return length(p.xz - dim.xy) 
      - dim.z;
}

float torus(vec3 p, vec2 t) {
  vec2 q = vec2(
      length(p.xz) - t.x, p.y);
  return length(q) - t.y;
}

Signed distance fields
An SDF returns the minimum possible 

distance from point p to the surface 
it describes.

The sphere, for instance, is the distance 
from p to the center of the sphere, 
minus the radius.

Negative values indicate a sample 
inside the surface, and still express 
absolute distance to the surface.
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Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
  int step = 0;
  float d = getSdf(pos);

  while (abs(d) > 0.001 && step < 50) {
    pos = pos + raydir * d;
    d = getSdf(pos);  // Return sphere(pos) or any other
    step++;
  }
  
  return 
      (step < 50) ? illuminate(pos, rayorig) : background;
}
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Visualizing step count

Final image Distance field

Brighter = more steps, up to 50
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Combining SDFs
We combine SDF models by choosing 
which is closer to the sampled point.

● Take the union of two SDFs by 
taking the min() of their 
functions.

● Take the intersection of two 
SDFs by taking the max() of their 
functions.

● The max() of function A and the 
negative of function B will return 
the difference of A - B.

By combining these binary operations 
we can create functions which describe 
very complex primitives.
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Combining SDFs
min(A, B)

(union)

max(A, B) 
(intersection)

max(-A, B)
(difference)
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Taking the min(), max(), etc of  two SDFs yields a 
sharp discontinuity. Interpolating the two SDFs with 
a smooth polynomial yields a smooth distance curve, 
blending the models:

Blending SDFs

float smin(float a, float b) {
  float k = 0.2;
  float h = clamp(0.5 + 0.5 * (b - a) / k, 0, 
1);
  return mix(b, a, h) - k * h * (1 - h);
}

Sample blending function (Quilez)

13http://iquilezles.org/www/articles/smin/smin.htm 
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Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse 
transform to the input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as 
usual, but apply its inverse to the pt within your distance 
function.

float sphere(vec3 pt, float radius) {
  return length(pt) - radius;
}

float f(vec3 pt) {
  return sphere(pt - vec3(0, 3, 0));
}
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Transforming SDF geometry
float fScene(vec3 pt) {

  // Scale 2x along X
  mat4 S = mat4(
      vec4(2, 0, 0, 0),
      vec4(0, 1, 0, 0),
      vec4(0, 0, 1, 0),
      vec4(0, 0, 0, 1));
  
  // Rotation in XY
  float t = sin(time) * PI / 4;
  mat4 R = mat4(
      vec4(cos(t),  sin(t), 0, 0),
      vec4(-sin(t), cos(t), 0, 0),
      vec4(0,       0,      1, 0),
      vec4(0,       0,      0, 1));

  // Translate to (3, 3, 3)
  mat4 T = mat4(
      vec4(1, 0, 0, 3),
      vec4(0, 1, 0, 3),
      vec4(0, 0, 1, 3),
      vec4(0, 0, 0, 1));
      
  pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

  return sdSphere(pt, 1);
}
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Transforming SDF geometry
The previous example modified ‘all 

of space’ with the same transform, 
so its distance functions retain 
their local linearity.

We can also apply non-uniform 
spatial distortion, such as by 
choosing how much we’ll modify 
space as a function of where in 
space we are.

float fScene(vec3 pt) {
  pt.y -= 1;
  float t = (pt.y + 2.5) * sin(time);
  return sdCube(vec3(
    pt.x * cos(t) - pt.z * sin(t), 
    pt.y / 2, 
    pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}
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Find the normal to an SDF
Finding the normal: local gradient

The distance function is locally linear and 
changes most as the sample moves directly 
away from the surface.  At the surface, the 
direction of greatest change is therefore 
equivalent to the normal to the surface.  

Thus the local gradient (the normal) can be 
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
    getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
    getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
    getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));
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SDF shadows
Ray-marched shadows are 

straightforward: march a ray 
towards each light source, don’t 
illuminate if the SDF ever drops 
too close to zero.

Unlike ray-tracing, soft shadows are 
almost free with SDFs: attenuate 
illumination by a linear function of 
the ray marching near to another 
object.
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float shadow(vec3 pt) {
  vec3 lightDir = normalize(lightPos - pt);
  float kd = 1;
  int step = 0;

  for (float t = 0.1; 
      t < length(lightPos - pt) 
      && step < renderDepth && kd > 0.001; ) {
    float d = abs(getSDF(pt + t * lightDir));
    if (d < 0.001) {
      kd = 0;
    } else {
      kd = min(kd, 16 * d / t);
    }
    t += d;
    step++;
  }
  return kd;
}

Soft SDF shadows

By dividing d by t, we 
attenuate the strength 
of the shadow as its 
source is further from 
the illuminated point.

19



Repeating SDF geometry
If we take the modulus of a point’s 

position along one or more axes 
before computing its signed 
distance, then we segment space 
into infinite parallel regions of 
repeated distance.  Space near the 
origin ‘repeats’.

With SDFs we get infinite repetition 
of geometry for no extra cost.

float fScene(vec3 pt) {
  vec3 pos;
  pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
  return sdCube(pos, vec3(1));
}
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Repeating SDF geometry

● sdSphere(4, 4)
  = √(4*4+4*4) - 1
  = ~4.5

float sphere(vec3 pt, float radius) {
  return length(pt) - radius;
}

● sdSphere(
    ((4 + 2) % 4) - 2, 4)
  = √(0*0+4*4) - 1
  = 3

● sdSphere(
    ((4 + 2) % 4) - 2,
    ((4 + 2) % 4) - 2)
  = √(0*0+0*0) - 1
  = -1 // Inside surface
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SDF - Live demo
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Recommended reading
Seminal papers:

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit 
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno 

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”, 
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf 

Special kudos to Inigo Quilez and his amazing blog:
● http://iquilezles.org/www/articles/smin/smin.htm 
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm 

Other useful sources:
● Johann Korndorfer, “How to Create Content with Signed Distance Functions”, 

https://www.youtube.com/watch?v=s8nFqwOho-s 
● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”, 

http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
● 9bit Science, “Raymarching Distance Fields”, 

http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html
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Further Graphics
Improved ray casting

Generalized Implicit Surfaces

Left: “Cornell Box” by Steven Parker, University of Utah.

A tera-ray monte-carlo rendering of the Cornell Box, generated in 2 CPU years on an Origin 2000. The full 
image contains 2048 x 2048 pixels with over 100,000 primary rays per pixel (317 x 317 jittered samples). 
Over one trillion rays were traced in the generation of this image. 

Right: Animated polygonization of two metaballs dynamically generating an implicit surface at 5 levels of 
octree recursion (~3200 polygons per frame) 24
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Great for…
● Collision detection between scene 

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization 
method for ray-based rendering 
is the use of bounding volumes.

Nested bounding volumes 
allow the rapid culling of large 
portions of geometry

● Test against the bounding 
volume of the top of the scene 
graph and then work down.
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Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit 
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders 
● common in early FPS games
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Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.

● Pro: Rays can skip 
subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object
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Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.

● Pro: The ray can skip empty 
cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty cells

● Popular for voxelized games 
(ex: Minecraft)
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The BSP tree pre-partitions the scene 
into objects in front of, on, and behind 
a tree of planes.
● This gives an ordering in which to test 

scene objects against your ray
● When you fire a ray into the scene, you 

test all near-side objects before testing 
far-side objects.

Challenges: 
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees
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Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)
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Implicit surfaces 
Implicit surface modeling(1) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface 
modelling:
● Organic forms and nonlinear 

shapes
● Scientific modeling (electron 

orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force 
functions”, “blobby modeling”… 32



Terminology
Isoclines Isosurfaces

Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller
Illumination-Driven Opacity Modulation for Expressive Volume 
Rendering, Proceedings of Vision, Modeling & Visualization 2012, 
pages 103-109. November 2012.

Grand Cayon Quadrangle
Arizona-Coconino Co.
7.5 minute series (topographic)
Courtesy of National Park Maps (npmaps.com)
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Implicit surface modeling
The user controls a set of control points or primitives. Each point 

generates a field of force, which drops off as a function of distance 
from the point (like gravity weakening with distance.)  

F(r) = “The force at distance r”
For any real value ᶦ, the set of all points in space where the sum of forces 

equals ᶦ is an isosurface: an implicit surface.
S = {x∊ℝ3 | ∑pF(|xp|) = ᶦ}

...or, more prosaically, solve:
∑pF(|xp|) - ᶦ = 0

Force = 2

1

0.5

0.25 ...
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A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0   ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3  ≤ r < b
  0 b   ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions
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Comparison of force functions
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Rendering implicit surfaces

Several choices:
1. Render the surface directly to the GPU 

+: Realtime lighting, smooth surfaces, looks great
-: Hard to integrate with other objects in scene
-: Solve the “intercept surface with ray” problem

2. Convert the surface into a mesh of connected polygons, 
approximating the surface to a fixed level of precision 
(“polygon soup”)
+: Mesh can be manipulated, interact with scene
-: Costly setup costs or runtime framerate hit

37



Rendering implicit surfaces
with Signed Distance Fields

Blynn’s metaballs force function is a piecewise 
Polynomial:

  a(1- 3r2 / b2)   0   ≤ r < b/
3

F(r) =   (3a/2)(1-r/b)2   b/
3
  ≤ r < b

  0   b   ≤ r

GLSL: 

float getMetaball(vec3 p, vec3 v) {
    float r = length(p - v);
    if (r < b / 3.0) {
        return a * (1.0 - 3.0 * r * r / b * b);
    } else if (r < b) {
        return (3.0 * a / 2.0) * (1.0 - r / b) * (1.0 - r / b);
    } else {
        return 0.0;
    }
}

38



Rendering implicit surfaces
with Signed Distance Fields

Let’s use Blynn’s constants: a=1, b=3
We want to be able to answer the question, “if 
F < 0.5, then we’re outside the surface.  What 
is the minimum distance from our current 
position to F=0.5?”

F = (3a/2)(1-r/b)2

  = (3/2)(1-r/3)2

r2 - 6r + (9-6F) = 0
r = 3±√(6F)

The square roots yield ± values, but we can 
discard the half of the polynomial whose r 
value is >b, leaving us with simply:

r = 3-√(6F)

r = 3-√3

Solve for F = 0.5 
→ r = 3-√3 = 1.2679529
Insight: if we restrict ourselves to 
metaballs of weight 1, then only 
Blynn’s second polynomial applies 
outside the isosurface of F=0.5
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Rendering implicit surfaces
with Signed Distance Fields

float sdImplicitSurface(vec3 p) {
  float mb = getMetaball(p, BallA) + getMetaball(p, BallB);
  float minDist = min(length(p - BallA), length(p - BallB));

  // 1.2679529 is the x-intercept of the metaball expression 
  // when force = 0.5
  float r = 1.2679529;

  float d;
  if (minDist > 3 /* b=3 */) {
    return max(minDist - 3, 3 - r);
  } else {
    return 3 - sqrt(6.0 * mb)- r;
  }
}

https://www.shadertoy.com/view/XltyWs 40
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Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018). 
Isovox: A Brick-Octree Approach to Indirect Visualization

Rendering implicit surfaces with polygons

An octree is a recursive subdivision of space 
which “homes in” on the surface, from larger to 
finer detail.  
● An octree encloses a cubical volume in space.  

You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.
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Polygonizing the surface

To display a set of octrees, convert the octrees 
into polygons.

● If some corners are “hot” (above the force limit) 
and others are “cold” (below the force limit) then 
the isosurface must cross the cube edges in 
between.

● The set of midpoints of adjacent crossed edges 
forms one or more rings, which can be 
triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonization, subdivide 
recursively; discard any child whose vertices 
are all hot or all cold.
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Polygonizing the surface

Recursive subdivision (on a quadtree):
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Polygonizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed separately.  ↓

Images courtesy of Diane Lingrand
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Polygonizing the surface

One way to overcome the ambiguities 
that arise with the cube method is to 
decompose the cube into tretrahedra.

● A common decomposition is into 
five tetrahedra. →

● Caveat: need to flip every other 
cube.  (Why?)

● Can also split into six.
Another way is to do the subdivision 

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden
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Smoothing the polygonization

Improved edge vertices
● The naïve implementation builds polygons whose vertices are the midpoints 

of the edges which lie between hot and cold vertices.
● The vertices of the implicit surface can be more closely approximated by 

points linearly interpolated along the edges of the cube by the weights of the 
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same force points 46



Marching cubes
An alternative to octrees if you only want 
to compute the final stage is the marching 
cubes algorithm (Lorensen & Cline, 1985):
● Fire a ray from any point known to be 

inside the surface.
● Using Newton’s method or binary search, 

find where the ray crosses the surface. 
● Newton: derivative estimated from discrete 

local sampling
● There may be many crossings

● Drop a cube around the intersection point: 
it will have some vertices hot, some cold.

● While there exists a cube which has at least 
one hot vertex and at least one cold vertex 
on a side and no neighbor on that side, 
create a neighboring cube on that side.  
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in 
1984, modeling a human spine.
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Further 
Graphics

A Brief Introduction to 
Computational Geometry

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
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Terminology
● We’ll be focusing on discrete (as 

opposed to continuous) representation 
of geometry; i.e., polygon meshes

• Many rendering systems limit themselves 
to triangle meshes

• Many require that the mesh be manifold

● In a closed manifold polygon mesh:
• Exactly two triangles meet at each edge
• The faces meeting at each vertex belong to 

a single, connected loop of faces

● In a manifold with boundary:
• At most two triangles meet at each edge
• The faces meeting at each vertex belong to 

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s 
Fundamentals of Computer Graphics, pp. 262-263
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Terminology
● We say that a surface is oriented if:

a. the vertices of every face are stored in a fixed 
order

b. if vertices i, j appear in both faces f1 and f2, then 
the vertices appear in order i, j in one and j, i in 
the other

● We say that a surface is embedded if, 
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space 

with any other vertex, edge or face except where 
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate 
3-space into two parts: a bounded interior 
and an unbounded exterior.

A cube with “anti-clockwise” 
oriented faces

Klein bottle: 
not an 
embedded 
surface.

Also, terrible 
for holding 
drinks.

This slide draws much inspiration from Hughes and Van Dam’s 
Computer Graphics: Principles and Practice, pp. 637-642
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Normal at a vertex

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.
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Finding the normal at a vertex
Take the weighted average 
of the normals of 
surrounding polygons, 
weighted by each polygon’s 
face angle at the vertex

Face angle: the angle α 
formed at the vertex v by the 
vectors to the next and 
previous vertices in the face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF
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Gaussian curvature on smooth surfaces
Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces
Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

aswept
as

0 on a plane

aswept
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces
On a discrete surface, normals do not vary smoothly: the 
normal to a face is constant on the face, and at edges and 
vertices the normal is—strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view travels 

across an edge from one face to another) or not at all (as one's point 
of view travels within a face.) 

The Gaussian curvature of the surface of any polyhedral 
mesh is zero everywhere except at the vertices, where it is 
infinite.
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Angle deficit – a better solution for 
measuring discrete curvature
The angle deficit AD(v) of a vertex v is defined to be two π 
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Hmmm…

Angle deficit
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Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed 
surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces
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The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ
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Barycentric coordinates (tA,tB,tC) are a 
coordinate system for describing the location of 
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’ 

placed at (A,B,C) respectively so that the 
center of gravity of the triangle lies at P.

● (tA,tB,tC) are proportional to the subtriangle 
areas of the three vertices.
○ The area of a triangle is ½ the length of the cross 

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates
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Barycentric coordinates
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// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
  vec3 v0 = b - a, v1 = c - a, v2 = p - a;
  float d00 = dot(v0, v0);
  float d01 = dot(v0, v1);
  float d11 = dot(v1, v1);
  float d20 = dot(v2, v0);
  float d21 = dot(v2, v1);
  float denom = d00 * d11 - d01 * d01;
  float v = (d11 * d20 - d01 * d21) / denom;
  float w = (d00 * d21 - d01 * d20) / denom;
  float u = 1.0 - v - w;
  return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)



The Voronoi diagram(2) of a set 
of points Pi divides space into 
‘cells’, where each cell Ci 
contains the points in space 
closer to Pi than any other Pj.
The Delaunay triangulation is 
the dual of the Voronoi 
diagram: a graph in which an 
edge connects every Pi which 
share a common edge in the 
Voronoi diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet 
domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams
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Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.
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Delaunay triangulations and equi-angularity

The equiangularity of any 
triangulation of a set of points 
S is a sorted list of the angles 
(α1… α3t) of the triangles.
● A triangulation is said to be 

equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and empty circles

Voronoi triangulations have 
the empty circle property: in 
any Voronoi triangulation of S, 
no point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a 
set of points in Rn is the planar 
projection of a convex hull in 
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft 

the points upwards, onto a 
parabola in 3D 
(P’i={x,y,x2+y2}i). The 
resulting polyhedral mesh will 
still be convex in 3D.
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Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.
● This can be used to extract a skeleton of the 

surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       
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Finding the Voronoi diagram
There are four general classes of 
algorithm for computing the Delaunay 
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing 

triangulation until it becomes 
Delaunay Fortune’s Algorithm for the plane-sweep construction of the 

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its 
inner edge and it becomes Delaunay.  (Image from Wikipedia.)
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Fortune’s algorithm
1. The algorithm maintains a sweep line and a 

“beach line”, a set of parabolas advancing 
left-to-right from each point.  The beach line 
is the union of these parabolas.
a. The intersection of each pair of 

parabolas is an edge of the voronoi 
diagram

b. All data to the left of the beach line is 
“known”; nothing to the right can 
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the 

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s 

algorithm is O(n log n)
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GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be 

rendered on the GPU, 
search all points for the 
nearest point

Elegant (and 2D only):
● Render each point as a 

discrete 3D cone in 
isometric projection, let 
z-buffering sort it out
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Voronoi cells in 3D

Silvan Oesterle, Michael Knauss 
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Further 
Graphics

Bezier Curves 
and Surfaces
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CAD, CAM, and a new motivation: 
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.
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The drive for smooth CAD/CAM

● Continuity (smooth curves) can  
be essential to the perception of 
quality.  

● The automotive industry wanted 
to design cars which were 
aerodynamic, but also visibly of 
high quality.

● Bezier (Renault) and de Casteljau 
(Citroen) invented Bezier curves 
in the 1960s.  de Boor (GM) 
generalized them to B-splines.
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History
The term spline comes from 
the shipbuilding industry: long, 
thin strips of wood or metal 
would be bent and held in 
place by heavy ‘ducks’, lead 
weights which acted as control 
points of the curve.
Wooden splines can be 
described by Cn-continuous 
Hermite polynomials which 
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm 
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Bezier cubic
● A Bezier cubic is a function P(t) defined 

by four control points:

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● P0 and P3 are the endpoints of the curve
● P1 and P2 define the other two corners of 

the bounding polygon.
● The curve fits entirely within the convex 

hull of P0...P3.

P0

P1 P2

P3
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Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P0 + tP1

● Quadratic: P(t) = (1-t)2P0 + 2t(1-t)P1 + t2P2

● Cubic: P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

...

General:
“n choose i” = n! / i!(n-i)!
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Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P0) + (t) (P1)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P0+tP1) + (t) ((1-t)P1+tP2)
● The cubic is a linear interpolation between linear interpolations between 

linear interpolations… etc.
● Another way to see Beziers is as a weighted average 

between the control points.

P0

P1

P2
(1-t)P0+tP1

(1-t)P1+tP2

P(t)
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Bernstein polynomials

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● The four control functions are the four Bernstein 
polynomials for n=3.

• General form: 
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1: 
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Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in 

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all 

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in 

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine( (x0,y0), (x1,y1) )
(x0,y0) = (x1,y1)

END FOR
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Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05
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Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an 

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a 

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a 

straight line is an adequate approximation
● when the Bezier lies within half a pixel width 

of the straight line along its entire length
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Drawing a Bezier cubic:
Adaptive method

Procedure DrawCurve( Bezier curve )
VAR Bezier left, right
BEGIN DrawCurve
  IF Flat(curve) THEN
    DrawLine(curve)
  ELSE
    SubdivideCurve(curve, left, right)
    DrawCurve(left)
    DrawCurve(right)
  END IF
END DrawCurve

e.g. if P1 and P2 both lie 
within half a pixel width of 
the line joining P0 to P3, 
then...

...draw a line from P0 
to P3; otherwise,

...split the curve into two 
Beziers covering the first and 
second halves of the original 
and draw recursively
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Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

  (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful!  If t < 0 or t > 1, 
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know 
this distance
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Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly, 
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3
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Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n 
line segments)
● In the demo, 50 steps suffices 

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve 
whose bounding box contains P)
● Can fast-discard sub-curves whose 

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices
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Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through 
four target data points
● Calculate the appropriate Bezier control point locations 

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just 

the two segments connected to that point
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● each curve is smooth within itself
● joins at endpoints can be:

● C1 – continuous in both position and tangent vector
● smooth join in a mathematical sense

● G1 – continuous in position, tangent vector in same direction
● smooth join in a geometric sense

● C0 – continuous in position only
● “corner”

● discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction” to 
its vector on either side of the join

Cn  ⇒ Gn 

Types of curve join P3

Q0
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C1 – continuous in position & 
tangent vector

C
1

G1 – continuous in 
position & tangent 
direction, but not 
tangent magnitude

G
1

C0 – continuous in 
position only

C
0
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Joining Bezier splines

● To join two Bezier splines with C0 
continuity, set P3=Q0.

● To join two Bezier splines with C1 
continuity, require C0 and make the tangent 
vectors equal: set P3=Q0 and P3-P2=Q1-Q0.

P3
Q0

Q1

P2
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What if we want to chain Beziers together?

Consider a chain of splines with 
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain 
over t by saying that instead of 
going from 0 to 1, t moves 
smoothly through the intervals 
[0,1,2,3]

The curve C(t) would be:
    C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0) 

[0,1,2,3] is a type of knot vector.  
0, 1, 2, and 3 are the knots.

P3

Q0

Q1

P2

Q3

Q2

R1

R0
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Tensor product

● The tensor product of two vectors is a 
matrix.

● Can take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two 

original expressions, so the cumulative polynomial 
represents both original polynomials completely.
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Bezier patches
● If curve A has n control points and 

curve B has m control points then 
A⊗B is an (n)x(m) matrix of 
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an 
(n)x(m) matrix of control points and 
sum them all up and you’ve got a 
bivariate expression for a rectangular 
surface patch, in 3D

● This approach generalizes to triangles 
and arbitrary n-gons.
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The Bezier patch defined by sixteen control points, 
P0,0 … P0,3 
⋮           ⋮
P3,0 … P3,3 

is:

Compare this to the 2D version:

Bezier patch definition
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Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent 

vector
● the four edge control points must match
● the two control points on either side of each 

of the four edge control points must be 
co-linear with both the edge point, and each 
other, and be equidistant from the edge point

● G1 – continuous in position and tangent 
direction the four edge control points must 
match the relevant control points must be 
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier 

surfaces and finite elements for MHD simulations.  
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 101
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Further Graphics

NURBS
Non-Uniform Rational B-Splines
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NURBS curves

Like Bezier cubics, NURBS curves are parametric
Their shape is determined by:
● control points, Pi
● the NURBS basis functions, Ni,k
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Properties of NURBS curves

1. The basis functions must sum to 1.0
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Properties of NURBS curves

2. The basis functions are calculated from a knot vector
● This is a non-decreasing sequence of real numbers

○ e.g. [0,0,0,1,1,1]
○ or [1,2,3,4,5,6]
○ or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]
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Properties of NURBS curves

3. If the basis functions are Cm-continuous at t, then P(t) is 
guaranteed to be Cm-continuous at t

● So continuity depends only on the basis functions, Ni,k 
● Continuity does not depend on the locations of the control 

points
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Properties of NURBS surfaces

NURBS surfaces are a bivariate 
generalisation of the univariate 
NURBS curve
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NURBS
● NURBS (“Non-Uniform Rational 

B-Splines”) are a generalization of 
the Bezier curve concept:
● NU: Non-Uniform.  The knots in the knot 

vector are not required to be uniformly 
spaced.

● R: Rational.  The spline may be defined 
by rational polynomials (homogeneous 
coordinates.)

● BS: B-Spline.  A generalization of Bezier 
splines with controllable degree.

Images from www.rhino3d.com/gallery 109

http://www.rhino3d.com/gallery


B-Splines
We’ll build our definition of a B-spline from:
● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values (“knots”)
● d = k-1 is the degree of the curve, so k is the number of control 

points which influence a single interval
● Ex: a cubic (d=3) has four control points (k=4)

● There are k+n knots ti, and ti ≤ ti+1 for all ti
● Each B-spline is C(k-2) continuous: 

continuity is degree minus one, 
so a k=3 curve has d=2 and is C1

http://www.mikekrummhoefener.com/toy-story-char-grid/ 110
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B-Splines

● A B-spline curve is defined between tmin and tmax:

● Ni,k(t) is the basis function of control point Pi for 
parameter k. Ni,k(t) is defined recursively:
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B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …

112

k=1

k=2

k=3

k=4



B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0
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N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines
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N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines
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N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of 
the four basis 
functions is 
fully defined 
(sums to one) 
between 
t2 (t=1.0) and
t5 (t=4.0).

+ + +
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N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of 
the three 
functions is 
fully defined 
(sums to one) 
between
t3 (t=2.0) and
t4 (t=3.0).
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B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is 
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti 
through ti+k, inclusive.  So six knots → five discontinuous functions → four piecewise 
linear interpolations → three quadratics, interpolating three control points.  n=3 
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is 
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5} 118



Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform: 

ti+1-ti = ti+2-ti+1 ∀ti. 
● Varying the size of an interval changes the 

parametric-space distribution of the weights assigned to 
the control functions.

● Repeating a knot value reduces the continuity of the 
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function 
being influenced only by that knot value; the spline will 
pass through the corresponding control point with C0 
continuity.
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Open vs Closed

● A knot vector which repeats its first and last knot 
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to 

force the curve to pass through the first or last 
control point.  

● Without this, the functions N1,k and Nn,k which 
weight P1 and Pn would still be ‘ramping up’ 
and not yet equal to one at the first and last ti.

120



Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}
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Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to 
control the curve’s proximity to the control 
point.
● We want to be able to slide the curve nearer or 

farther without losing continuity or introducing 
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.
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Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point 
Pi=(xi, yi, zi) 

becomes the homogeneous control point 
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:
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Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal 

coordinates:
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Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to 

a control point by changing the corresponding weight.
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Non-Uniform Rational B-Splines in action

Demo

126
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Problems with Bezier (NURBS) patches
● Joining spline patches 

with Cn continuity 
across an edge is 
challenging.

● What happens to 
continuity at corners 
where the number of 
patches meeting isn’t 
exactly four?

● Animation is tricky: 
bending and blending 
are doable, but not easy.

Sadly, the world isn’t made up of shapes that 
can always be made from one 
smoothly-deformed rectangular surface.
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● The solution: 
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding: 
we want guaranteed 
continuity, without 
having to build 
everything out of 
rectangular patches.
• Applications include 

CAD/CAM, 3D 
printing, museums and 
scanning, medicine, 
movies…

Geri’s Game, by Pixar (1997)
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Subdivision surfaces

● Instead of ticking a parameter t along 
a parametric curve (or the parameters 
u,v over a parametric grid), 
subdivision surfaces repeatedly refine 
from a coarse set of control points.

● Each step of refinement adds new 
faces and vertices.

● The process converges to a smooth 
limit surface.

(Catmull-Clark in action)131



Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision 
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two 
separate groups during 1978:
• Doo and Sabin found a biquadratic surface
• Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn 
[Butterfly subdivision], 1990) led to tools suitable 
for CAD/CAM and animation
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Subdivision surfaces and the movies

● Pixar first demonstrated subdivision 
surfaces in 1997 with Geri’s Game.  
• Up until then they’d done everything in 

NURBS (Toy Story, A Bug’s Life.)
• From 1999 onwards everything they did was 

with subdivision surfaces (Toy Story 2, 
Monsters Inc, Finding Nemo...)

• Two decades on, it’s all heavily customized - 
creases and edges can be detailed by artists 
and regions of subdivision can themselves be 
dynamically subdivided
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Useful terms
● A scheme which describes a 1D curve (even if that curve is 

travelling in 3D space, or higher) is called univariate, referring to 
the fact that the limit curve can be approximated by a polynomial 
in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the 
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control 
points is called an interpolating scheme.

● A scheme which moves away from its 
original control points, converging to a 
limit curve or surface nearby, is called an 
approximating scheme.

Control surface for Geri’s head134



How it works

● Example: Chaikin curve subdivision (2D)
• On each edge, insert new control points at ¼ and 

¾ between old vertices; delete the old points
• The limit curve is C1 everywhere (despite the poor 

figure.)
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Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will 
have twice as many control points as before.
Notice the different treatment of generating odd and 
even control points.
Borders (terminal points) are a special case.

←Even

←Odd
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Notation

Chaikin can be written in vector notation as:
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Notation
● The standard notation compresses the scheme to a kernel:

• h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of 

the matrix form can be used to prove the continuity of the 
subdivision limit surface.

• The details of analysis are fascinating, lengthy, and sadly 
beyond the scope of this course

● The limit curve of Chaikin is a quadratic B-spline!
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Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel
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Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A + 

(3/16) B + 
(3/16) C + 
(1/16) D

This replaces every old vertex 
with four new vertices.
The limit surface is biquadratic, 
C1 continuous everywhere.

P

A
B

C
D

9
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Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces
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Catmull-Clark

● Catmull-Clark is a bivariate approximating 
scheme with kernel h=(1/8)[1,4,6,4,1].
• Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge
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Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule
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Catmull-Clark in action
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Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
145



Extraordinary vertices
● Catmull-Clark and Doo-Sabin both 

operate on quadrilateral meshes.
• All faces have four boundary edges
• All vertices have four incident edges

● What happens when the mesh contains 
extraordinary vertices or faces?

• For many schemes, adaptive weights exist 
which can continue to guarantee at least 
some (non-zero) degree of continuity, but 
not always the best possible.

● CC replaces extraordinary faces with 
extraordinary vertices; DS replaces 
extraordinary vertices with extraordinary 
faces.

Detail of Doo-Sabin at cube 
corner
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Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex 
rules generalized for 
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in 

the one-ring:
3/2n2

● Interleaved neighbors in 
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision 
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 147



Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)
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Loop subdivision

Loop subdivision in action.  The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html
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Creases

Extensions exist for most schemes to support 
creases, vertices and edges flagged for partial or 
hybrid subdivision.

Still from “Volume 
Enclosed by 
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg, 
Ulrich Reif, Scott 
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf
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Splitting a subdivision surface
Many algorithms rely on subdividing a surface and 
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the 
limit surface will change (see right)
● Need to include all control points from the previous 

generation, which influence the limit surface in this 
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 151



Continuous level of detail

For live applications (e.g. games) can compute 
continuous level of detail, typically as a 
function of distance:

Level 5 Level 5.2 Level 5.8 152



Bounding boxes and convex hulls for 
subdivision surfaces
● The limit surface is (the weighted average of (the weighted 

averages of (the weighted averages of (repeat for eternity…)))) 
the original control points.

● This implies that for any scheme where all weights are positive 
and sum to one, the limit surface lies entirely within the 
convex hull of the original control points.

● For schemes with negative weights:
• Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter 

space of the absolute values of the weights.
• For a scheme with negative weights, L will exceed 1.
• Then the limit surface must lie within the convex hull of the 

original control points, expanded unilaterally by a ratio of (L-1).
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Subdivision Schemes—A partial list
● Approximating

• Quadrilateral
• (1/2)[1,2,1]
• (1/4)[1,3,3,1] 

(Doo-Sabin)
• (1/8)[1,4,6,4,1] 

(Catmull-Clark)
• Mid-Edge

• Triangles
• Loop

● Interpolating
• Quadrilateral

• Kobbelt
• Triangle

• Butterfly
• “√3” Subdivision

Many more exist, some much 
more complex
This is a major topic of 
ongoing research

154



References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary 
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for 
Surface Interpolation with Tension Control.” ACM Transactions on 
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using 
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.” 
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph 
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”, 
http://www.mrl.nyu.edu/publications/subdiv-course2000/

155

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/


Global Illumination
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

156



Improving on the classic lighting model
● Soft shadows are expensive 
● Shadows of transparent objects require 

further coding or hacks
● Lighting off reflective objects follows 

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color 

bleeding, such as in the Cornell 
Box—notice how the sides of the inner 
cubes are shaded red and green.)

● Fundamentally, the ambient term is a hack 
and the diffuse term is only one step in 
what should be a recursive, self-reinforcing 
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University 
in 1984 by Don Greenberg.  An actual box 
is built and photographed; an identical 
scene is then rendered in software and the 
two images are compared.
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Ambient occlusion

● Ambient illumination is a blanket constant that we often add to every 
illuminated element in a scene, to (inaccurately) model the way that 
light scatters off all surfaces, illuminating areas not in direct lighting.

● Ambient occlusion is the technique of 
adding/removing ambient light when 
other objects are nearby and scattered 
light wouldn’t reach the surface.

● Computing ambient occlusion is a 
form of global illumination, in which 
we compute the lighting of scene 
elements in the context of the scene 
as a whole.

Image from “ZBrush® Character Creation: Advanced 
Digital Sculpting, Second Edition”, by Scott Spencer, 2011158



Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)159

http://filmicgames.com/archives/6


Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)160
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Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)161
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Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)162

http://filmicgames.com/archives/6


Ambient occlusion - Theory

We can treat the background (the sky) 
as a vast ambient illumination source.  
● For each vertex of a surface, compute 

how much background illumination 
reaches the vertex by computing how 
much sky it can ‘see’

● Integrate occlusion Ap over the 
hemisphere around the normal at the 
vertex:

●   Ap occlusion at point p
●   n normal at point p
●   Vp,ᶫ visibility from p in direction ᶫ
●   Ω integrate over area (hemisphere)

Bottom image credit: “GPU Gems 2”, nVidia, 2005.  Vertices mapped 
to illumination disks for hemispheric illumination mapping. 163



Ambient occlusion - Theory

● This approach is very flexible
● Also very expensive!
● To speed up computation, randomly 

sample rays cast out from each 
polygon or vertex (this is a 
Monte-Carlo method)

● Alternatively, render the scene from 
the point of view of each vertex and 
count the background pixels in the 
render

● Best used to pre-compute per-object 
“occlusion maps”, texture maps of 
shadow to overlay onto each object

● But pre-computed maps fare poorly 
on animated models...

Image credit: “GPU Gems 1”, nVidia, 2004.  
Top: without AO.   Bottom: with AO. 164
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Screen Space Ambient Occlusion 
(“SSAO”)

“True ambient occlusion is hard, 
let’s go hacking.”

● Approximate ambient occlusion 
by comparing z-buffer values in 
screen space!

● Open plane = unoccluded
● Closed ‘valley’ in depth buffer = 

shadowed by nearby geometry
● Multi-pass algorithm
● Runs entirely on the GPU

Image: CryEngine 2.  M. Mittring, “Finding Next Gen – 
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28 165



Screen Space Ambient Occlusion
1. For each visible point on a surface in the scene 

(ie., each pixel), take multiple samples (typically 
between 8 and 32) from nearby and map these 
samples back to screen space

2. Check if the depth sampled at each neighbor is 
nearer to, or further from, the scene sample point

3. If the neighbor is nearer than the scene sample 
point then there is some degree of occlusion

a. Care must be taken not to occlude if the nearer 
neighbor is too much nearer than the scene 
sample point; this implies a separate object, much 
closer to the camera

4. Sum retained occlusions, weighting with an 
occlusion function

Image: StarCraft II.  Advances in Real-Time Rendering in 3D 
Graphics and Games - Course notes, SIGGRAPH 2008 166



0) Base Image1) Base SSAO2) Dilate Horizontal3) Dilate Vertical4) Low Pass Filter (significant blurring)

SSAO example- Uncharted 2

John Hable, GDC 2010, “Uncharted 2: HDR Lighting” 
(filmicgames.com/archives/6) 167

http://filmicgames.com/archives/6


Ambient occlusion and Signed Distance 
Fields

In a nutshell, SSAO tries to estimate 
occlusion by asking, “how far is it to 
the nearest neighboring geometry?”

With signed distance fields, this question 
is almost trivial to answer.

float ambient(vec3 pt, vec3 normal) {
  float a = 1;
  int step = 0;
  
  for (float t = 0.01; t <= 0.1; ) {
    float d = abs(getSdf(pt + t * normal));
    a = min(a, d / t);
    t += max(d, 0.01);
  }
  return a;
}

float ambient(vec3 pt, vec3 normal) {
  return abs(getSdf(pt + 0.1 * normal)) / 0.1;
}
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Images from Cornell University’s graphics group 
http://www.graphics.cornell.edu/online/research/ 

Radiosity
● Radiosity is an illumination method which 

simulates the global dispersion and 
reflection of diffuse light.
● First developed for describing spectral 

heat transfer (1950s)
● Adapted to graphics in the 1980s at 

Cornell University
● Radiosity is a finite-element approach to 

global illumination: it breaks the scene into 
many small elements (‘patches’) and 
calculates the energy transfer between 
them.
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Radiosity—algorithm
● Surfaces in the scene are divided into patches, small subsections of 

each polygon or object.
● For every pair of patches A, B, compute a view factor (also called a 

form factor) describing how much energy from patch A reaches 
patch B.
● The further apart two patches are in space or orientation, the less light 

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying 

more light to patches with higher relative view factors.  Repeating 
this step will distribute the total 
light across the scene, producing 
a global diffuse illumination model.
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Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving 
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch 
combined with the total light being reflected by the patch:

This forms a system of linear equations, where…
Bi is the radiosity of patch i; 
Bj is the radiosity of each of the other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.
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Radiosity—form factors
● Finding form factors can be done 

procedurally or dynamically
● Can subdivide every surface into small 

patches of similar size
● Can dynamically subdivide wherever the 1st 

derivative of calculated intensity rises above 
some threshold.

● Computing cost for a general radiosity 
solution goes up as the square of the number 
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be 

a waste.
● Patches should ideally closely align with 

lines of shadow.
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Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor 

and walls of the room are dynamically 
subdivided to produce more patches 
where shadow detail is higher.

Images from “Automatic
generation of node spacing 
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm 

(A) (B)
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Radiosity—view factors
One equation for the view factor between 
patches i, j is:

…where θi is the angle between the normal of 
patch i and the line to patch j, r is the distance 
and V(i,j) is the visibility from i to j (0 for 
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj
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Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a 

half-cube.  The scene is then ‘rendered’ from the point of view of the 
patch, through the walls of the hemicube; V(i,j) is computed for each 
patch based on which patches it can see (and at what percentage) in its 
hemicube.

● A purer method, but more computationally expensive, uses 
hemispheres.

Note: This method can be accelerated 
using modern graphics hardware to 
render the scene.  The scene is 
‘rendered’ with flat lighting, setting the 
‘color’ of each object to be a pointer to 
the object in memory.
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Radiosity gallery

Teapot (wikipedia)

Image from 
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation: 
a Synthesis of Ray Tracing and Radiosity Methods, 
John R. Wallace, Michael F. Cohen and Donald P. Greenberg 
(Cornell University, 1987)
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Shadows, refraction and caustics
● Problem: shadow ray strikes 

transparent, refractive object.  
● Refracted shadow ray will 

now miss the light.
● This destroys the validity of 

the boolean shadow test.
● Problem: light passing through 

a refractive object will 
sometimes form caustics (right), 
artifacts where the envelope of 
a collection of rays falling on 
the surface is bright enough to 
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and 
outside of its shadow.
Photo credit: Jan Zankowski
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Shadows, refraction and caustics

● Solutions for shadows of transparent objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping 178
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Photon mapping
Photon mapping is the process 
of emitting photons into a 
scene and tracing their paths 
probabilistically to build a 
photon map, a data structure 
which describes the 
illumination of the scene 
independently of its geometry. 

This data is then combined 
with ray tracing to compute the 
global illumination of the 
scene.

Image by Henrik Jensen (2000)
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Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1.  Photon scattering

A. Photons are fired from each light source, scattered in 
randomly-chosen directions.  The number of photons per 
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, 
folks.)  Where they strike a surface they are either 
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction 
and energy of the photon in the photon map.  The photon 
map data structure must support fast insertion and fast 
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters
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Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2.  Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for 

specular but compute diffuse from the photon map and do 
away with ambient completely.

C. Compute radiant illumination by summing the 
contribution along the eye ray of all photons within a 
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon 
map.  For speed, the caustic map is usually distinct from 
the radiance map.

Image by Zack Waters
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Photon mapping is probabilistic
This method is a great example of 
Monte Carlo integration, in which a 
difficult integral (the lighting 
equation) is simulated by randomly 
sampling values from within the 
integral’s domain until enough 
samples average out to about the 
right answer.
● This means that you’re going to be 

firing millions of photons.  Your 
data structure is going to have to be 
very space-efficient.

http://www.okino.com/conv/imp_jt.htm
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Photon mapping is probabilistic
● Initial photon direction is random.  Constrained by light 

shape, but random.
● What exactly happens each time a photon hits a solid also 

has a random component:
● Based on the diffuse reflectance, specular reflectance and 

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1.  This gives a probability map:

● Choose a random value p є [0,1].  Where p falls in the 
probability map of the surface determines whether the photon is 
reflected, refracted or absorbed.

0 1pd ps pt
This surface would 
have minimal 
specular highlight.
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Photon mapping gallery

http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html 

http://graphics.ucsd.edu/~henrik/images/global.html 
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http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html
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“Cyberspace. A consensual hallucination experienced 
daily by billions of legitimate operators, in every 
nation, by children being taught mathematical 
concepts... A graphic representation of data abstracted 
from banks of every computer in the human system. 
Unthinkable complexity. Lines of light ranged in the 
nonspace of the mind, clusters and constellations of 
data. Like city lights, receding...”

― William Gibson, Neuromancer (1984)



What is… the Matrix?

What is Virtual Reality?
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Immersion is the art and technology of surrounding 
the user with a virtual context, such that there’s 
world above, below, and all around them.

Presence is the visceral reaction to a convincing 
immersion experience. It’s when immersion is so 
good that the body reacts instinctively to the 
virtual world as though it’s the real one.

When you turn your head to look up at the attacking 
enemy bombers, that’s immersion; when you can’t 
stop yourself from ducking as they roar by 
overhead, that’s presence.

Top: HTC Vive (Image creduit: Business Insider)
Middle: The Matrix (1999)
Bottom: Google Daydream View (2016)



The “Sword of Damocles” (1968)
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In 1968, Harvard Professor 
Ivan Sutherland, working 
with his student Bob Sproull, 
invented the world’s first 
head-mounted display, or 
HMD. 

“The right way to think about 
computer graphics is that the 
screen is a window through which 
one looks into a virtual world.  
And the challenge is to makes the 
world look real, sound real, feel 
real and interact realistically.”

-Ivan Sutherland (1965)



Our eyes and brain compute depth cues from many 
different signals:

● Binocular vision (“stereopsis”)
The brain merges two images into one with depth
○ Ocular convergence
○ Shadow stereopsis

● Perspective
Distant things are smaller

● Parallax motion and occlusion
Things moving relative to each other, or in front of each other, convey depth

● Texture, lighting and shading
We see less detail far away; shade shows shape; distant objects are fainter

● Relative size and position and connection to the ground
If we know an object’s size we can derive distance, or the reverse; if an 
object is grounded, perspective on the ground anchors the object’s distance

Distance and Vision

190Image: Pere Borrell del Caso’s Escapando la Critica (“Escaping Criticism”) (1874)
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Perspective

Ambient 
shadows

Occlusion

Shadows

Image credit: Scott Murray

Murray, Boyaci, Kersten, The 
representation of perceived 
angular size in human
primary visual cortex, Nature 
Neuroscience (2006)



Binocular display
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Today’s VR headsets work by 
presenting similar, but different, 
views to each eye

Each eye sees an image of the virtual 
scene from that eye’s point of view 
in VR

This can be accomplished by rendering 
two views to one screen (Playstation 
VR, Google Daydream) or two 
dedicated displays (Oculus Rift, 
HTC Vive)

Top: Davis, Bryla, Benton, Oculus Rift in Action (2014)
Bottom: Oculus DK1 demo scene “Tuscanny”



Teardown of an Oculus Rift CV1

193Teardown of an Oculus Rift CV1 showing details of lenses and displays
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612 

https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612


Accounting for lens effects

194Image credit: Davis, Bryla, Benton, 
Oculus Rift in Action (2014)

Lenses bend light: the lenses in 
the VR headset warp the 
image on the screen, creating 
a pincushion distortion.

This is countered by first 
introducing a barrel 
distortion in the GPU shader 
used to render the image.  

The barrel-distorted image 
stretches back to full size 
when it’s seen through the 
headset lenses.



Accelerometer and electromagnetic sensors in the headset track 
the user’s orientation and acceleration.  VR software 
converts these values to a basis which transforms the scene.

Ex: WebVR API:
interface VRPose {

  readonly attribute Float32Array? position;

  readonly attribute Float32Array? linearVelocity;

  readonly attribute Float32Array? linearAcceleration;

  readonly attribute Float32Array? orientation;

  readonly attribute Float32Array? angularVelocity;

  readonly attribute Float32Array? angularAcceleration;

};

Sensors
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Top: 6DoF (6 degrees of freedom) - Wikipedia
Bottom: Roll (Z), Pitch (X) and Yaw (Y) - Google Design

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-position
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearacceleration
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-orientation
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularacceleration


Sensor fusion

Problem: Even the best accelerometer can’t detect all 
motion.  Over a few seconds, position will drift.

Solution: Advanced headsets also track position with 
separate hardware on the user’s desk or walls.

● Oculus Rift: “Constellation”, a desk-based IR 
camera, tracks a pattern of IR LEDs on the headset

● HTC Vive: “base station” units track user in room
● Playstation VR: LEDs captured by PS camera

The goal is to respond in a handful of milliseconds
to any change in the user’s position or orientation, 
to preserve presence.

196Top: Constellation through an IR-enabled camera (image credit: ifixit.com)
Bottom: HTC Vive room setup showing two base stations (image credit: HTC)

http://ifixit.com


Sensors - how fast is fast?

● To preserve presence, the rendered image must respond 
to changes in head pose faster than the user can perceive

● That’s believed to be about 20ms, so no HMD can have a 
framerate below 50hz

● Most headset display hardware has a higher framerate
○ The Rift CV1 is locked at 90hz
○ Rift software must exceed that framerate 
○ Failure to do so causes ‘judder’ as frames are lost
○ Judder leads to nausea, nausea leads to hate, hate leads to the 

dark side
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Dealing with latency: sensor prediction

A key immersion improvement is to predict the future basis.  
This allows software to optimize rendering.

● At time t, head pos = X, head velocity = V, head 
acceleration = A

● Human heads do not accelerate very fast
● Rendering a single frame takes dt milliseconds
● At t + dt, we can predict pos = X + Vdt + ½ Adt2

● By starting to render the world from the user’s predicted 
head position, when rendering is complete, it aligns with 
where there head is by then (hopefully).

Ex: The WebVR API returns predicted pose by default
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Dealing with latency: ‘timewarp’

Another technique to deal with lost frames 
is asynchronous timewarp. 

● Headset pose is fetched immediately before frame 
display and is used to shift the frame on the display 
to compensate for ill-predicted head motion

199Image credit: Davis, Bryla, Benton, 
Oculus Rift in Action (2014)

Head velocity, 
acceleration captured; 
head pose predicted

Rendering 
first eye

Begin 
frame

Rendering 
second 
eye

Head pose captured 
again to increase 
accuracy (second eye)

Final head 
pose 
capture

Timewarp 
shifts 
image

Render!



Developing for VR

Dedicated SDKs
● HTC Vive
● Oculus Rift SDK

● C++
● Bindingsfor Python, Java

● Google Daydream SDK
● Android, iOS and Unity

● Playstation VR
● Playstation dev kit

200

General-purpose SDKs
● WebGL - three.js
● WebVR API

Higher-level game 
development
● Unity VR

https://www.htcvive.com/us/develop_portal
http://developer.oculus.com
https://developers.google.com/vr/daydream/overview
https://www.playstation.com/en-us/develop/
https://w3c.github.io/webvr/
https://unity3d.com/unity/multiplatform/vr-ar


“Sim sickness”

The Problem:
1. Your body says, “Ah, we’re sitting still.”
2. Your eyes say, “No, we’re moving!  It’s exciting!”
3. Your body says, “Woah, my inputs disagree!  I must have 

eaten some bad mushrooms.  Better get rid of them!”
4. Antisocial behavior ensues

The causes of simulation sickness (like motion sickness, but 
in reverse) are many.  Severity varies between individuals; 
underlying causes are poorly understood.
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Reducing sim sickness

The cardinal rule of VR:

1. Never take head-tracking control away from the user
2. Head-tracking must match the user’s motion
3. Avoid moving the user without direct interaction
4. If you must move the user, do so in a way that doesn’t 

break presence

202

The user is in control of the camera.



How can you mitigate sim sickness?

Design your UI to reduce illness
● Never mess with the field of view
● Don’t use head bob
● Don’t knock the user around
● Offer multiple forms of camera control

○ Look direction
○ Mouse  + keyboard
○ Gamepad

● Try to match in-world character height 
and IPD (inter-pupilary distance) to that 
of the user

● Where possible, give the user a stable 
in-world reference frame that moves 
with them, like a vehicle or cockpit
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Hawken, by Meteor Entertainment (2014)



Further ways to reduce sim sickness

Design your VR world to reduce illness
● Limit sidestepping, backstepping, turning; never force the user to spin
● If on foot, move at real-world speeds (1.4m/s walk, 3m/s run)
● Don’t use stairs, use ramps
● Design to scale--IPD and character height should match world scale
● Keep the horizon line consistent, static and constant
● Avoid very large moving objects which take up most of the field of view
● Use darker textures
● Avoid flickering, flashing, or high color contrasts
● Don’t put content where they have to roll their eyes to see it
● If possible, build breaks into your VR experience
● If possible, give the user an avatar; if possible, the avatar body should react 

to user motion, to give an illusion of proprioception
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Classic user interfaces in 3D

Many classic UI paradigms 
will not work if you 
recreate them in VR

● UI locked to sides or corners of 
the screen will be distorted by 
lenses and harder to see

● Side and corner positions force 
the user to roll their eyes

● Floating 3D dialogs create a 
virtual plane within a virtual 
world, breaking presence

● Modal dialogs ‘pause’ the world
● Small text is much harder to read 

in VR

205Top: EVE Online (2003)
Bottom: Team Fortress (2007)



In-world UIs are evolving

Deus Ex Human Revolution (2011) Deus Ex Mankind Divided (2016)
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Increasingly, UI elements are being integrated into the virtual world



The best virtual UI is in-world UI

Top left: Call of Duty: Black Ops (2010) Top right: Halo 4 (2012)
Bottom left: Crysis 3 (2013) Bottom right: Batman: Arkham Knight (2015) 207



208Strike Suit Zero (2013)

http://www.youtube.com/watch?v=FYvpo_PDu4w


209Elite: Dangerous (2014)

http://www.youtube.com/watch?v=-ZvjH430C_o


Storytelling in games

The visual language of games is often 
the language of movies

● Cutscenes
● Angle / reverse-angle 

conversations
● Voiceover narration
● Pans
● Dissolves
● Zooms...

In VR, storytelling by moving the 
camera will not work well because 
the user is the camera.
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"It's a new communications medium. What is necessary is to 
develop a grammar and syntax. It's like film. When film was 
invented, no one knew how to use it. But gradually, a visual 
grammar was developed. Filmgoers began to understand how 
the grammar was used to communicate certain things. We have 
to do the same thing with this.“

Neal Stephenson, Interface, 1994

Call of Duty: Modern Warfare 3 (2012)
The player’s helicopter has been shot down; they emerge into 
gameplay, transitioning smoothly from passive to active.



Drawing the user’s attention
When presenting dramatic content in 

VR, you risk the user looking 
away at a key moment.

● Use audio cues, movement or 
changing lighting or color to 
draw focus

● Use other characters in the 
scene; when they all turn to look 
at something, the player will too

● Design the scene to direct the 
eye

● Remember that in VR, you know 
when key content is in the 
viewing frustum
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 The Emperor’s New Groove (2000)
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Advice for a good UI
Always display relevant state—Primary application state 

should be visible to the user. For an FPS shoot-em-up, 
this means showing variables like ammo count and 
health. Combine audio and video for key cues such as 
player injury.

Use familiar context and imagery—Don’t make your users 
learn specialized terms so they can use your app. If 
you’re writing a surgery interface for medical training, 
don’t force medical students to learn about virtual 
cameras and FOVs.

Support undo/redo—Don’t penalize your users for clicking 
the wrong thing. Make undoing recent actions a primary 
user interface mode whenever feasible.

Design to prevent error—If you want users to enter a value 
between 1 and 10 in a box, don’t ask them to type; they 
could type 42. Give them a slider instead.

Build shortcuts for expert users—The feeling that you’re 
becoming an expert in a system often comes from 
learning its shortcuts. Make sure that you offer combos 
and shortcuts that your users can learn—but don’t 
require them.

Don’t require expert understanding—Visually indicate 
when an action can be performed, and provide useful 
data if the action will need context. If a jet fighter pilot 
can drop a bomb, then somewhere on the UI should be a 
little indicator of the number of bombs remaining. That 
tells players that bombs are an option and how many 
they’ve got. If it takes a key press to drop the bomb, 
show that key on the UI.

Keep it simple—Don’t overwhelm your users with useless 
information; don’t compete with yourself for space on 
the screen. Always keep your UI simple. “If you can’t 
explain it to a six-year-old, you don’t understand it 
yourself” (attributed to Albert Einstein).

Make error messages meaningful—Don’t force users to 
look up arcane error codes. If something goes wrong, 
take the time to clearly say what, and more important, 
what the user should do about it.

Abridged from Usability Engineering by Jakob Nielsen 
(Morgan Kaufmann, 1993)
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An unhelpful error message



Gestural interfaces

Hollywood has been training us 
for a while now to expect 
gestural user interfaces.

A gestural interface uses 
predetermined intuitive hand 
and body gestures to control 
virtual representations of 
material data.

Many hand position capture 
devices are in development 
(ex: Leap Motion)
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214Johnny Mnemonic (1995)

http://www.youtube.com/watch?v=l0dYS2AKBN8


215Marvel’s Agents of S.H.I.E.L.D. (2013) S01 E13

http://www.youtube.com/watch?v=Gyfq0QBhPs4
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Appendices
Additional topics of interest in computer graphics.  

These slides are not examinable.

A. Constructive Solid Geometry
B. Antialiasing
C. Procedural textures
D. Perlin noise
E. Voxels
F. Particle systems

217
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd



Appendix A:
Constructive Solid Geometry

Constructive Solid Geometry 
(CSG) is a ray-tracing technique 
which builds complicated forms 
out of simple primitives, 
comparable to (and more 
complicated than, but also more 
precise than) Signed Distance 
Fields.

These primitives are combined 
with the standard boolean 
operations: union, intersection, 
difference. CSG figure by Neil Dodgson
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Constructive Solid Geometry

Three operations:
1. Union   2. Intersection      3. Difference
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Constructive Solid Geometry

CSG surfaces are described by a binary tree, 
where each leaf node is a primitive and each 
non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4
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For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points 

where r enters of leaves A or B.
● You can think of each intersection as 

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t 
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

A B

Ray-tracing CSG models
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Ray-tracing CSG models

Each boolean operation can 
be modeled as a state 
machine.
For each operation, retain 
those intersections that 
transition into or out of
the critical state(s).
● Union: 

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and 
B

In A In B

Not in A 
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A
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Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B  Was In A  Is In A  Was In B  Is In B

 t1  No  Yes  No  No

 t2  Yes  Yes  No  Yes

 t3  Yes  No  Yes  Yes

 t4  No  No  Yes  No

difference = 
((wasInA != isInA) &&
 (!isInB)&&(!wasInB)) 
|| 
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models
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Constructive Solid Geometry - References

● Jules Bloomenthal, Introduction to Implicit 
Surfaces (1997)

● Alan Watt, 3D Computer Graphics, 
Addison Wesley (2000)

● MIT lecture notes: 
http://groups.csail.mit.edu/graphics/classes/
6.837/F98/talecture/
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Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency, 
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that 
curved or inclined lines appear 
inappropriately jagged, caused by the 
mapping of a number of points to the same 
pixel.
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Aliasing
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Antialiasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely 
continuous function (the color of the scene) with a finite, discrete function (the 
pixels of the image).

One solution to this is super-sampling.  If we fire multiple rays through each 
pixel, we can average the colors 
computed for every ray together 
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

227Lecture note: Four printed slides removed here, 
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Antialiasing with OpenGL

Antialiasing remains a challenge with 
hardware-rendered graphics, but image quality 
can be significantly improved through GPU 
hardware.
● The simplest form of hardware 

anti-aliasing is Multi-Sample 
Anti-Aliasing (MSAA).

● “Render everything at higher resolution, 
then down-sample the image to blur 
jaggies”

● Enable MSAA in OpenGL with 
glfwWindowHint(GLFW_SAMPLES, 4);
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Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs 
4x supersampled (right) 
polygon edge, using 
OpenGL’s built-in 
supersampling support.  
Images magnified 4x.
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Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be 
very limiting in high-resolution scenarios (high demand 
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based 
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur 
the lines’ width

3. Composite the filtered lines into the framebuffer 
using alpha blending

This approach is great for polygonal models, tougher for 
effects-heavy visual scenes like video games
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Antialiasing on 
the GPU

More recently, NVIDIA’s Fast 
Approximate Anti-Aliasing 
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those 

subject to aliasing.  
2. Map these to horizontal (gold) or vertical (blue) edges. 
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge 

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel 

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from 
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 231
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Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is 

dynamically refined based on the rate at which the function defining 
the edge is changing with respect to the surrounding pixels on the 
screen.

This is supported in GLSL by the methods dFdx(F) and 
dFdy(F).  
● These methods return the derivative with respect to X and Y, in screen 

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing 

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the 
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost, 
Addison Wesley, 2006.  Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 232



Antialiasing texture reads with Signed 
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately 
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map 
instead of as pixels.  This allows per-pixel smoothing at multiple distances.
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3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed 
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest 

black pixel (if white) or white pixel (if 
black).  Distance from white is negative.

Conventional antialiasing Signed distance field 234



Antialiasing texture reads with Signed 
Distance Fields

Conventional bilinear filtering 
computes a weighted average of 
color, but an SDF computes a 
weighted average of distances.

This means that a small step away 
from the original values we find 
smoother, straighter lines where 
the slope of the isocline is 
perpendicular to the slope of the 
source data.

By smoothing the isocline of the 
distance threshold, we achieve 
smoother edges and nifty edge 
effects.

low = 0.02;    high = 0.035;

double dist =
bilinearSample(tex coords);

double t = 
(dist - low) / (high - low);

return (dist < low) ? BLACK

  : (dist > high) ? WHITE

  : BLACK*(1 - t) + WHITE*(t);

Adding a 
second 
isocline 
enables 
colored 
borders.235



Antialiasing - Interesting further reading

● https://people.csail.mit.edu/ericchan/articles/prefilter/ 
● https://developer.download.nvidia.com/assets/gamedev/fi

les/sdk/11/FXAA_WhitePaper.pdf 
● http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in

-15-Slides.pdf 
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Procedural texture
Instead of relying on discrete 

pixels, you can get infinitely 
more precise results with 
procedurally generated textures. 

Procedural textures compute the 
color directly from the U,V 
coordinate without an image 
lookup.

For example, here’s the code for 
the torus’ brick pattern (right):

  tx = (int) 10 * u

  ty = (int) 10 * v
  oddity = (tx & 0x01) == (ty & 0x01)
  edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
  return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u 
coordinate by 4 to repeat the brick texture 
four times around the torus.
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Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the renderer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a 
dent on the surface.

If we duplicate the normals, we don’t 
have to duplicate the dent.

238



Non-color textures: normal mapping
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Procedural texturing in the 
fragment shader

(Code truncated for brevity--check out the 
source on github for how I did the curved 
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
  bool isOutsideFace = (length(position - CENTER) > 1);
  bool isEye = (length(position - LEFT_EYE) < 0.1)
      || (length(position - RIGHT_EYE) < 0.1);
  bool isMouth = (length(position - CENTER) < 0.75)
      && (position.y <= -0.1);

  vec3 color = (isMouth || isEye || isOutsideFace)
      ? BLACK : YELLOW;
  fragmentColor = vec4(color, 1.0);
}
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Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic 

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the 

shader
● ...much, much more!
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Perlin Noise

By mapping 3D coordinates to colors, we can create 
volumetric texture.  The input to the texture is local model 
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow 
rings, with darker wood from earlier in the year and 
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood + 
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 242



Adding realism

The teapot on the previous slide doesn’t look very wooden, 
because it’s perfectly uniform.  One way to make the 
surface look more natural is to add a randomized noise 
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in 

space to scalar values chosen at random.

For natural-looking results, use 
Perlin noise, which interpolates 
smoothly between noise values.
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Perlin noise
Perlin noise (invented by Ken Perlin) is a method for 

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom 

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended 

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 244
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Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at 

integer intervals.  You’ll look up noise values at 
arbitrary points in the plane, and they’ll be 
determined by the four nearest seed randoms on 
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in 
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)} 
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html245
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Perlin noise 2
For each of the four corners, take the dot product of the 

random seed vector with the vector from that corner to 
(x, y).  This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values 
of the dot products will change smoothly, with no 
discontinuity.

● As (x, y) approaches a grid point, the contribution from 
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range 
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)
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Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.  

Perlin noise uses a weighted averaging function chosen 
such that values close to zero and one are moved closer 
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’
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Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/  

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html
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Voxels and volume rendering

A voxel (“volume pixel”) is a cube in space 
with a given color; like a 3D pixel.

● Voxels are often used for medical 
imaging, terrain, scanning and model 
reconstruction, and other very large 
datasets.

● Voxels usually contain color but could 
contain other data as well—flow rates (in 
medical imaging), density functions 
(analogous to implicit surface modeling), 
lighting data, surface normals, 3D texture 
coordinates, etc.

● Often the goal is to render the voxel data 
directly, not to polygonalize it.



Volume ray casting
If speed can be sacrificed for accuracy, 
render voxels with volume ray casting:

● Fire a ray through each pixel;
● Sample the voxel data along the ray, 

computing the weighted average (trilinear 
filter) of the contributions to the ray of 
each voxel it passes through or near;

● Compute surface gradient from of each 
voxel from local sampling; generate 
surface normals; compute lighting with 
the standard lighting equation;

● ‘Paint’ the ray from back to front, 
occluding more distant voxels with nearer 
voxels; this gives hidden-surface removal 
and easy support for transparency.

The steps of volume rendering; a volume ray-cast skull.
Images from wikipedia.



Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit, 

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between 

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere 
between eight (in 3d) voxel centers.
Weight the color of the sample by the 
inverse of its distance from the center 
of each voxel.



Reasonably fast voxels

If speed is of the essence, cast your 
rays but stop at the first opaque 
voxel.

● Store precomputed lighting 
directly in the voxel

● Works for diffuse and ambient 
but not specular

● Popular technique for video 
games (e.g. Comanche →)

Another clever trick: store voxels 
in a sparse voxel octree.

● Watch for it in id’s 
next-generation engine…

Sparse Voxel Octree Ray-Casting, Cyril Crassin

Comanche Gold, NovaLogic Inc (1998)



Ludicrously fast voxels

If speed is essential (like if, say, you’re 
writing a video game in 1992) and you 
know that your terrain can be 
represented as a height-map (ie., without 
overhangs), replace ray-casting with 
‘column’-casting and use a “Y-buffer”:

● Draw from front to back, drawing 
columns of pixels from the bottom of 
the screen up.  For each pixel in 
receding order, track the current max y 
height painted and only draw new pixels 
above that y.  Anything shorter must be 
behind something that’s nearer, and it’s 
shorter; so don’t draw it.

Depth

D e p
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Particle systems
Particle systems are a monte-carlo style 
technique which uses thousands (or 
millions) or tiny graphical artefacts to 
create large-scale visual effects.

Particle systems are used for hair, fire, 
smoke, water, clouds, explosions, 
energy glows, in-game special effects 
and much more.

The basic idea:
“If lots of little dots all do something 
the same way, our brains will see the 
thing they do and not the dots doing it.”

A particle system 
created with 3dengfx, 
from wikipedia.

Screenshot from the 
game Command and 
Conquer 3 (2007) by 
Electronic Arts; the 
“lasers” are particle 
effects.

http://en.wikipedia.org/wiki/Particle_system


History of particle systems

1962: Ships explode into 
pixel clouds in 
“Spacewar!”, the 2nd 
video game ever.
1978: Ships explode into 
broken lines in 
“Asteroid”.
1982: The Genesis Effect 
in “Star Trek II: The 
Wrath of Khan”.

Fanboy note: OMG.  You can play the original Spacewar!
at http://spacewar.oversigma.com/ -- the actual original 
game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/


“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g


Particle systems

How it works:
● Particles are generated from an emitter.

○ Emitter position and orientation are specified discretely;
○ Emitter rate, direction, flow, etc are often specified as a bounded 

random range (monte carlo)
● Time ticks; at each tick, particles move.

○ New particles are generated; expired particles are deleted
○ Forces (gravity, wind, etc) accelerate each particle
○ Acceleration changes velocity
○ Velocity changes position

● Particles are rendered.



Particle systems — emission

Each frame, your emitter will generate 
new particles.
Here you have two choices: 

● Constrain the average number of particles 
generated per frame:

○ # new particles = average # particles per frame + 
rand() * variance

● Constrain the average number of particles per 
screen area:

○ # new particles = average # particles per area + 
rand() * variance * screen area

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)



Particle systems — integration

Each new particle will have at 
least the following attributes:

● initial position
● initial velocity (speed and 

direction)

You now have a choice of 
integration technique:

● Evaluate the particles at 
arbitrary time t as a 
closed-form equation for a 
stateless system.

● Or, use iterative (numerical) 
integration:

○ Euler integration
○ Verlet integration
○ Runge-Kutta integration



Particle systems — two integration shortcuts:

Closed-form function:
● Represent every particle as a 

parametric equation; store only 
the initial position p0, initial 
velocity v0, and some fixed 
acceleration (such as gravity g.)

● p(t)=p0+v0t+½gt2

No storage of state
● Very limited possibility of 

interaction
● Best for water, projectiles, 

etc—non-responsive particles.

Discrete integration:
● Remember your 

physics—integrate 
acceleration to get velocity:

○ v’=v + a •∆t
● Integrate velocity to get 

position:
○ p’=p + v •∆t

● Collapse the two, integrate 
acceleration to position:

○ p’’=2p’-p + a •∆t2

Timestep must be 
nigh-constant; collisions are 
hard.



Particle systems—rendering

Can render particles as points, textured polys, or 
primitive geometry

● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make 

pretty good fire, smoke, etc
Transitioning one particle type to another 
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter for 
‘splash’ particles on impact

Particles can be the force sources for a 
blobby model implicit surface

● This is sometimes an effective way to 
simulate liquids

nvidia

Hagit Schechter
http://www.cs.ubc.ca/~hagitsch/Researc
h/
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