
Ray Marching and Signed Distance Fields
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

1

GPU Ray-tracing

Ray tracing 101: “Choose the color of
the pixel by firing a ray through and
seeing what it hits.”

Ray tracing 102:
“Let the pixel make up
its own mind.”

2

GPU Ray-tracing
1. Use a minimal vertex shader (no

transforms) - all work happens in
the fragment shader

2. Set up OpenGL with minimal
geometry, a single quad

3. Bind coordinates to each vertex,
let the GPU interpolate
coordinates to every pixel

4. Implement raytracing in GLSL:
a. For each pixel, compute the ray

from the eye through the pixel,
using the interpolated
coordinates to identify the pixel

b. Run the ray tracing algorithm
for every ray

3

vec3 getRayDir(
 vec3 camDir,
 vec3 camUp,
 vec2 texCoord) {
 vec3 camSide = normalize(
 cross(camDir, camUp));
 vec2 p = 2.0 * texCoord - 1.0;
 p.x *= iResolution.x
 / iResolution.y;
 return normalize(
 p.x * camSide
 + p.y * camUp
 + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing

4

c
a
m
U
p

camSide

camDir

Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
 float OdotD = dot(rayorig - pos, raydir);
 float OdotO = dot(rayorig - pos, rayorig - pos);
 float base = OdotD * OdotD - OdotO + radius * radius;

 if (base >= 0) {
 float root = sqrt(base);
 float t1 = -OdotD + root;
 float t2 = -OdotD - root;
 if (t1 >= 0 || t2 >= 0) {
 float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
 vec3 pt = rayorig + raydir * t;
 vec3 normal = normalize(pt - pos);
 return Hit(pt, normal, t);
 }
 }
 return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing: Sphere

5

An alternative to raytracing:
Ray-marching
An alternative to classic ray-tracing is

ray-marching, in which we take a
series of finite steps along the ray until
we strike an object or exceed the
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer,

 “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

• often involves many steps
• too large a step size can lead to lost

intersections (step over the object)
• an if() test in the heart of a for() loop

is very hard for the GPU to optimize

6

GPU Ray-marching:
Signed distance fields
Ray-marching can be dramatically

improved, to impressive realtime
GPU performance, using signed
distance fields:

1. Fire ray into scene
2. At each step, measure distance field

function: d(p) = [distance to nearest
object in scene]

3. Advance ray along ray heading by
distance d, because the nearest
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’. Early paper:
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

7

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

float sphere(vec3 p, float r) {
 return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
 vec3 d = abs(p) - dim;
 return min(max(d.x,
 max(d.y, d.z)), 0.0)
 + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim)
{
 return length(p.xz - dim.xy)
 - dim.z;
}

float torus(vec3 p, vec2 t) {
 vec2 q = vec2(
 length(p.xz) - t.x, p.y);
 return length(q) - t.y;
}

Signed distance fields
An SDF returns the minimum possible

distance from point p to the surface
it describes.

The sphere, for instance, is the distance
from p to the center of the sphere,
minus the radius.

Negative values indicate a sample
inside the surface, and still express
absolute distance to the surface.

8https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
 int step = 0;
 float d = getSdf(pos);

 while (abs(d) > 0.001 && step < 50) {
 pos = pos + raydir * d;
 d = getSdf(pos); // Return sphere(pos) or any other
 step++;
 }

 return
 (step < 50) ? illuminate(pos, rayorig) : background;
}

9

Visualizing step count

Final image Distance field

Brighter = more steps, up to 50

10

Combining SDFs
We combine SDF models by choosing
which is closer to the sampled point.

● Take the union of two SDFs by
taking the min() of their
functions.

● Take the intersection of two
SDFs by taking the max() of their
functions.

● The max() of function A and the
negative of function B will return
the difference of A - B.

By combining these binary operations
we can create functions which describe
very complex primitives.

11

Combining SDFs
min(A, B)

(union)

max(A, B)
(intersection)

max(-A, B)
(difference)

12

d = zero Object
centers

di
st

an
ce

Taking the min(), max(), etc of two SDFs yields a
sharp discontinuity. Interpolating the two SDFs with
a smooth polynomial yields a smooth distance curve,
blending the models:

Blending SDFs

float smin(float a, float b) {
 float k = 0.2;
 float h = clamp(0.5 + 0.5 * (b - a) / k, 0,
1);
 return mix(b, a, h) - k * h * (1 - h);
}

Sample blending function (Quilez)

13http://iquilezles.org/www/articles/smin/smin.htm

http://iquilezles.org/www/articles/smin/smin.htm

Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse
transform to the input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as
usual, but apply its inverse to the pt within your distance
function.

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

float f(vec3 pt) {
 return sphere(pt - vec3(0, 3, 0));
}

14

Transforming SDF geometry
float fScene(vec3 pt) {

 // Scale 2x along X
 mat4 S = mat4(
 vec4(2, 0, 0, 0),
 vec4(0, 1, 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Rotation in XY
 float t = sin(time) * PI / 4;
 mat4 R = mat4(
 vec4(cos(t), sin(t), 0, 0),
 vec4(-sin(t), cos(t), 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Translate to (3, 3, 3)
 mat4 T = mat4(
 vec4(1, 0, 0, 3),
 vec4(0, 1, 0, 3),
 vec4(0, 0, 1, 3),
 vec4(0, 0, 0, 1));

 pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

 return sdSphere(pt, 1);
}

15

Transforming SDF geometry
The previous example modified ‘all

of space’ with the same transform,
so its distance functions retain
their local linearity.

We can also apply non-uniform
spatial distortion, such as by
choosing how much we’ll modify
space as a function of where in
space we are.

float fScene(vec3 pt) {
 pt.y -= 1;
 float t = (pt.y + 2.5) * sin(time);
 return sdCube(vec3(
 pt.x * cos(t) - pt.z * sin(t),
 pt.y / 2,
 pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}

16

Find the normal to an SDF
Finding the normal: local gradient

The distance function is locally linear and
changes most as the sample moves directly
away from the surface. At the surface, the
direction of greatest change is therefore
equivalent to the normal to the surface.

Thus the local gradient (the normal) can be
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
 getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));

17

SDF shadows
Ray-marched shadows are

straightforward: march a ray
towards each light source, don’t
illuminate if the SDF ever drops
too close to zero.

Unlike ray-tracing, soft shadows are
almost free with SDFs: attenuate
illumination by a linear function of
the ray marching near to another
object.

18

float shadow(vec3 pt) {
 vec3 lightDir = normalize(lightPos - pt);
 float kd = 1;
 int step = 0;

 for (float t = 0.1;
 t < length(lightPos - pt)
 && step < renderDepth && kd > 0.001;) {
 float d = abs(getSDF(pt + t * lightDir));
 if (d < 0.001) {
 kd = 0;
 } else {
 kd = min(kd, 16 * d / t);
 }
 t += d;
 step++;
 }
 return kd;
}

Soft SDF shadows

By dividing d by t, we
attenuate the strength
of the shadow as its
source is further from
the illuminated point.

19

Repeating SDF geometry
If we take the modulus of a point’s

position along one or more axes
before computing its signed
distance, then we segment space
into infinite parallel regions of
repeated distance. Space near the
origin ‘repeats’.

With SDFs we get infinite repetition
of geometry for no extra cost.

float fScene(vec3 pt) {
 vec3 pos;
 pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
 return sdCube(pos, vec3(1));
}

20

Repeating SDF geometry

● sdSphere(4, 4)
 = √(4*4+4*4) - 1
 = ~4.5

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

● sdSphere(
 ((4 + 2) % 4) - 2, 4)
 = √(0*0+4*4) - 1
 = 3

● sdSphere(
 ((4 + 2) % 4) - 2,
 ((4 + 2) % 4) - 2)
 = √(0*0+0*0) - 1
 = -1 // Inside surface

21

SDF - Live demo

22

Recommended reading
Seminal papers:

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”,
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

Special kudos to Inigo Quilez and his amazing blog:
● http://iquilezles.org/www/articles/smin/smin.htm
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

Other useful sources:
● Johann Korndorfer, “How to Create Content with Signed Distance Functions”,

https://www.youtube.com/watch?v=s8nFqwOho-s
● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”,

http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
● 9bit Science, “Raymarching Distance Fields”,

http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

23

http://graphics.cs.illinois.edu/papers/zeno
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
http://iquilezles.org/www/articles/smin/smin.htm
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.youtube.com/watch?v=s8nFqwOho-s
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

Further Graphics
Improved ray casting

Generalized Implicit Surfaces

Left: “Cornell Box” by Steven Parker, University of Utah.

A tera-ray monte-carlo rendering of the Cornell Box, generated in 2 CPU years on an Origin 2000. The full
image contains 2048 x 2048 pixels with over 100,000 primary rays per pixel (317 x 317 jittered samples).
Over one trillion rays were traced in the generation of this image.

Right: Animated polygonization of two metaballs dynamically generating an implicit surface at 5 levels of
octree recursion (~3200 polygons per frame) 24

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization
method for ray-based rendering
is the use of bounding volumes.

Nested bounding volumes
allow the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

25

Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders
● common in early FPS games

26

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

● Pro: Rays can skip
subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

27

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.

● Pro: The ray can skip empty
cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty cells

● Popular for voxelized games
(ex: Minecraft)

28

The BSP tree pre-partitions the scene
into objects in front of, on, and behind
a tree of planes.
● This gives an ordering in which to test

scene objects against your ray
● When you fire a ray into the scene, you

test all near-side objects before testing
far-side objects.

Challenges:
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

29

A B

C D E F

A

B

C
E

F
D

Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

30

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

31

Implicit surfaces
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”… 32

Terminology
Isoclines Isosurfaces

Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller
Illumination-Driven Opacity Modulation for Expressive Volume
Rendering, Proceedings of Vision, Modeling & Visualization 2012,
pages 103-109. November 2012.

Grand Cayon Quadrangle
Arizona-Coconino Co.
7.5 minute series (topographic)
Courtesy of National Park Maps (npmaps.com)

33

https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
http://npmaps.com/wp-content/uploads/grand-canyon-south-rim-west-topo-map.jpg

Implicit surface modeling
The user controls a set of control points or primitives. Each point

generates a field of force, which drops off as a function of distance
from the point (like gravity weakening with distance.)

F(r) = “The force at distance r”
For any real value ᶦ, the set of all points in space where the sum of forces

equals ᶦ is an isosurface: an implicit surface.
S = {x∊ℝ3 | ∑pF(|xp|) = ᶦ}

...or, more prosaically, solve:
∑pF(|xp|) - ᶦ = 0

Force = 2

1

0.5

0.25 ...
34

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions

35

Comparison of force functions

36

Rendering implicit surfaces

Several choices:
1. Render the surface directly to the GPU

+: Realtime lighting, smooth surfaces, looks great
-: Hard to integrate with other objects in scene
-: Solve the “intercept surface with ray” problem

2. Convert the surface into a mesh of connected polygons,
approximating the surface to a fixed level of precision
(“polygon soup”)
+: Mesh can be manipulated, interact with scene
-: Costly setup costs or runtime framerate hit

37

Rendering implicit surfaces
with Signed Distance Fields

Blynn’s metaballs force function is a piecewise
Polynomial:

 a(1- 3r2 / b2) 0 ≤ r < b/
3

F(r) = (3a/2)(1-r/b)2 b/
3
 ≤ r < b

 0 b ≤ r

GLSL:

float getMetaball(vec3 p, vec3 v) {
 float r = length(p - v);
 if (r < b / 3.0) {
 return a * (1.0 - 3.0 * r * r / b * b);
 } else if (r < b) {
 return (3.0 * a / 2.0) * (1.0 - r / b) * (1.0 - r / b);
 } else {
 return 0.0;
 }
}

38

Rendering implicit surfaces
with Signed Distance Fields

Let’s use Blynn’s constants: a=1, b=3
We want to be able to answer the question, “if
F < 0.5, then we’re outside the surface. What
is the minimum distance from our current
position to F=0.5?”

F = (3a/2)(1-r/b)2

 = (3/2)(1-r/3)2

r2 - 6r + (9-6F) = 0
r = 3±√(6F)

The square roots yield ± values, but we can
discard the half of the polynomial whose r
value is >b, leaving us with simply:

r = 3-√(6F)

r = 3-√3

Solve for F = 0.5
→ r = 3-√3 = 1.2679529
Insight: if we restrict ourselves to
metaballs of weight 1, then only
Blynn’s second polynomial applies
outside the isosurface of F=0.5

39

Rendering implicit surfaces
with Signed Distance Fields

float sdImplicitSurface(vec3 p) {
 float mb = getMetaball(p, BallA) + getMetaball(p, BallB);
 float minDist = min(length(p - BallA), length(p - BallB));

 // 1.2679529 is the x-intercept of the metaball expression
 // when force = 0.5
 float r = 1.2679529;

 float d;
 if (minDist > 3 /* b=3 */) {
 return max(minDist - 3, 3 - r);
 } else {
 return 3 - sqrt(6.0 * mb)- r;
 }
}

https://www.shadertoy.com/view/XltyWs 40

https://www.shadertoy.com/view/XltyWs

Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018).
Isovox: A Brick-Octree Approach to Indirect Visualization

Rendering implicit surfaces with polygons

An octree is a recursive subdivision of space
which “homes in” on the surface, from larger to
finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

41

Polygonizing the surface

To display a set of octrees, convert the octrees
into polygons.

● If some corners are “hot” (above the force limit)
and others are “cold” (below the force limit) then
the isosurface must cross the cube edges in
between.

● The set of midpoints of adjacent crossed edges
forms one or more rings, which can be
triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide
recursively; discard any child whose vertices
are all hot or all cold.

42

Polygonizing the surface

Recursive subdivision (on a quadtree):

43

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

44

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Polygonizing the surface

One way to overcome the ambiguities
that arise with the cube method is to
decompose the cube into tretrahedra.

● A common decomposition is into
five tetrahedra. →

● Caveat: need to flip every other
cube. (Why?)

● Can also split into six.
Another way is to do the subdivision

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden

45

http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube

Smoothing the polygonization

Improved edge vertices
● The naïve implementation builds polygons whose vertices are the midpoints

of the edges which lie between hot and cold vertices.
● The vertices of the implicit surface can be more closely approximated by

points linearly interpolated along the edges of the cube by the weights of the
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same force points 46

Marching cubes
An alternative to octrees if you only want
to compute the final stage is the marching
cubes algorithm (Lorensen & Cline, 1985):
● Fire a ray from any point known to be

inside the surface.
● Using Newton’s method or binary search,

find where the ray crosses the surface.
● Newton: derivative estimated from discrete

local sampling
● There may be many crossings

● Drop a cube around the intersection point:
it will have some vertices hot, some cold.

● While there exists a cube which has at least
one hot vertex and at least one cold vertex
on a side and no neighbor on that side,
create a neighboring cube on that side.
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in
1984, modeling a human spine.

47

References
Implicit modelling:
D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design,

Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG

Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4

1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

48

http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

Further
Graphics

A Brief Introduction to
Computational Geometry

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
49

Terminology
● We’ll be focusing on discrete (as

opposed to continuous) representation
of geometry; i.e., polygon meshes

• Many rendering systems limit themselves
to triangle meshes

• Many require that the mesh be manifold

● In a closed manifold polygon mesh:
• Exactly two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected loop of faces

● In a manifold with boundary:
• At most two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s
Fundamentals of Computer Graphics, pp. 262-263

50

Terminology
● We say that a surface is oriented if:

a. the vertices of every face are stored in a fixed
order

b. if vertices i, j appear in both faces f1 and f2, then
the vertices appear in order i, j in one and j, i in
the other

● We say that a surface is embedded if,
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space

with any other vertex, edge or face except where
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate
3-space into two parts: a bounded interior
and an unbounded exterior.

A cube with “anti-clockwise”
oriented faces

Klein bottle:
not an
embedded
surface.

Also, terrible
for holding
drinks.

This slide draws much inspiration from Hughes and Van Dam’s
Computer Graphics: Principles and Practice, pp. 637-642

51

Normal at a vertex

Expressed as a limit,
The normal of surface S at point P is the limit of the
cross-product between two (non-collinear) vectors
from P to the set of points in S at a distance r from P
as r goes to zero. [Excluding orientation.]

52

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept

out on a unit sphere between the two normals of the
two faces.

● The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

53

Finding the normal at a vertex
Take the weighted average
of the normals of
surrounding polygons,
weighted by each polygon’s
face angle at the vertex

Face angle: the angle α
formed at the vertex v by the
vectors to the next and
previous vertices in the face F

Note: In this equation, arccos
implies a convex polygon. Why?

NF

54

Gaussian curvature on smooth surfaces
Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
● One can measure the

directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k2.

● The product of k1 and k2 is the
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia

55

Gaussian curvature on smooth surfaces
Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and
the area of the region itself.
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

Area on the surface
Area of the projections
of the normals on the
unit sphere

aswept
as

0 on a plane

aswept
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)

56

Gaussian curvature on discrete surfaces
On a discrete surface, normals do not vary smoothly: the
normal to a face is constant on the face, and at edges and
vertices the normal is—strictly speaking—undefined.
● Normals change instantaneously (as one's point of view travels

across an edge from one face to another) or not at all (as one's point
of view travels within a face.)

The Gaussian curvature of the surface of any polyhedral
mesh is zero everywhere except at the vertices, where it is
infinite.

57

Angle deficit – a better solution for
measuring discrete curvature
The angle deficit AD(v) of a vertex v is defined to be two π
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

58

Angle deficit

High angle deficit Low angle deficit Negative angle deficit

59

Hmmm…

Angle deficit

60

Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed
surface is
...“a topologically invariant property of a

surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com
● Informally, it’s the number of

coffee cup handles in the surface.

Genus 0

Genus 1

61

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

62

Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces

63

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic χ, the sum of
the angle deficits of the vertices is 2πχ:

Cube:
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron:
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ

64

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are proportional to the subtriangle
areas of the three vertices.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

65

Barycentric coordinates

66

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
 vec3 v0 = b - a, v1 = c - a, v2 = p - a;
 float d00 = dot(v0, v0);
 float d01 = dot(v0, v1);
 float d11 = dot(v1, v1);
 float d20 = dot(v2, v0);
 float d21 = dot(v2, v1);
 float denom = d00 * d11 - d01 * d01;
 float v = (d11 * d20 - d01 * d21) / denom;
 float w = (d00 * d21 - d01 * d20) / denom;
 float u = 1.0 - v - w;
 return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)

The Voronoi diagram(2) of a set
of points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.
The Delaunay triangulation is
the dual of the Voronoi
diagram: a graph in which an
edge connects every Pi which
share a common edge in the
Voronoi diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

67

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

68

http://www.cs.cornell.edu/home/chew/Delaunay.html

Delaunay triangulations and equi-angularity

The equiangularity of any
triangulation of a set of points
S is a sorted list of the angles
(α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

69

Delaunay triangulations and empty circles

Voronoi triangulations have
the empty circle property: in
any Voronoi triangulation of S,
no point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

70

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D
(P’i={x,y,x2+y2}i). The
resulting polyhedral mesh will
still be convex in 3D.

71

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

72

http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan

Finding the Voronoi diagram
There are four general classes of
algorithm for computing the Delaunay
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing

triangulation until it becomes
Delaunay Fortune’s Algorithm for the plane-sweep construction of the

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its
inner edge and it becomes Delaunay. (Image from Wikipedia.)

73

Fortune’s algorithm
1. The algorithm maintains a sweep line and a

“beach line”, a set of parabolas advancing
left-to-right from each point. The beach line
is the union of these parabolas.
a. The intersection of each pair of

parabolas is an edge of the voronoi
diagram

b. All data to the left of the beach line is
“known”; nothing to the right can
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s

algorithm is O(n log n)

74

GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be

rendered on the GPU,
search all points for the
nearest point

Elegant (and 2D only):
● Render each point as a

discrete 3D cone in
isometric projection, let
z-buffering sort it out

75

Voronoi cells in 3D

Silvan Oesterle, Michael Knauss

76

References
Gaussian Curvature:

http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html

The Poincaré Formula:
http://mathworld.wolfram.com/PoincareFormula.html

Jordan curves:
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom
.html

Voronoi diagrams:
M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational
Geometry: Algorithms and Applications”, Springer-Verlag,
http://www.cs.uu.nl/geobook/

http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

77

http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/PoincareFormula.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

Further
Graphics

Bezier Curves
and Surfaces

78
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

CAD, CAM, and a new motivation:
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

79

The drive for smooth CAD/CAM

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves
in the 1960s. de Boor (GM)
generalized them to B-splines.

80

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

81

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Bezier cubic
● A Bezier cubic is a function P(t) defined

by four control points:

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● P0 and P3 are the endpoints of the curve
● P1 and P2 define the other two corners of

the bounding polygon.
● The curve fits entirely within the convex

hull of P0...P3.

P0

P1 P2

P3

82

Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P0 + tP1

● Quadratic: P(t) = (1-t)2P0 + 2t(1-t)P1 + t2P2

● Cubic: P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

...

General:
“n choose i” = n! / i!(n-i)!

83

Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P0) + (t) (P1)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P0+tP1) + (t) ((1-t)P1+tP2)
● The cubic is a linear interpolation between linear interpolations between

linear interpolations… etc.
● Another way to see Beziers is as a weighted average

between the control points.

P0

P1

P2
(1-t)P0+tP1

(1-t)P1+tP2

P(t)

84

Bernstein polynomials

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● The four control functions are the four Bernstein
polynomials for n=3.

• General form:
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1:

85

Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

86

Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05

87

Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a

straight line is an adequate approximation
● when the Bezier lies within half a pixel width

of the straight line along its entire length

88

Drawing a Bezier cubic:
Adaptive method

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve
 IF Flat(curve) THEN
 DrawLine(curve)
 ELSE
 SubdivideCurve(curve, left, right)
 DrawCurve(left)
 DrawCurve(right)
 END IF
END DrawCurve

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3,
then...

...draw a line from P0
to P3; otherwise,

...split the curve into two
Beziers covering the first and
second halves of the original
and draw recursively

89

Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

 (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful! If t < 0 or t > 1,
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know
this distance

90

Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3

91

Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n
line segments)
● In the demo, 50 steps suffices

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve
whose bounding box contains P)
● Can fast-discard sub-curves whose

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices

92

Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points
● Calculate the appropriate Bezier control point locations

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just

the two segments connected to that point

93

● each curve is smooth within itself
● joins at endpoints can be:

● C1 – continuous in both position and tangent vector
● smooth join in a mathematical sense

● G1 – continuous in position, tangent vector in same direction
● smooth join in a geometric sense

● C0 – continuous in position only
● “corner”

● discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction” to
its vector on either side of the join

Cn ⇒ Gn

Types of curve join P3

Q0

94

C1 – continuous in position &
tangent vector

C
1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G
1

C0 – continuous in
position only

C
0

95

Joining Bezier splines

● To join two Bezier splines with C0
continuity, set P3=Q0.

● To join two Bezier splines with C1
continuity, require C0 and make the tangent
vectors equal: set P3=Q0 and P3-P2=Q1-Q0.

P3
Q0

Q1

P2
96

What if we want to chain Beziers together?

Consider a chain of splines with
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain
over t by saying that instead of
going from 0 to 1, t moves
smoothly through the intervals
[0,1,2,3]

The curve C(t) would be:
 C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0)

[0,1,2,3] is a type of knot vector.
0, 1, 2, and 3 are the knots.

P3

Q0

Q1

P2

Q3

Q2

R1

R0

97

Tensor product

● The tensor product of two vectors is a
matrix.

● Can take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two

original expressions, so the cumulative polynomial
represents both original polynomials completely.

98

Bezier patches
● If curve A has n control points and

curve B has m control points then
A⊗B is an (n)x(m) matrix of
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an
(n)x(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

● This approach generalizes to triangles
and arbitrary n-gons.

99

The Bezier patch defined by sixteen control points,
P0,0 … P0,3
⋮ ⋮
P3,0 … P3,3

is:

Compare this to the 2D version:

Bezier patch definition

100

Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent

vector
● the four edge control points must match
● the two control points on either side of each

of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point

● G1 – continuous in position and tangent
direction the four edge control points must
match the relevant control points must be
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier

surfaces and finite elements for MHD simulations.
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 101

References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

102

Further Graphics

NURBS
Non-Uniform Rational B-Splines

103
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

NURBS curves

Like Bezier cubics, NURBS curves are parametric
Their shape is determined by:
● control points, Pi
● the NURBS basis functions, Ni,k

104

Properties of NURBS curves

1. The basis functions must sum to 1.0

105

Properties of NURBS curves

2. The basis functions are calculated from a knot vector
● This is a non-decreasing sequence of real numbers

○ e.g. [0,0,0,1,1,1]
○ or [1,2,3,4,5,6]
○ or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]

106

Properties of NURBS curves

3. If the basis functions are Cm-continuous at t, then P(t) is
guaranteed to be Cm-continuous at t

● So continuity depends only on the basis functions, Ni,k
● Continuity does not depend on the locations of the control

points

107

Properties of NURBS surfaces

NURBS surfaces are a bivariate
generalisation of the univariate
NURBS curve

108

NURBS
● NURBS (“Non-Uniform Rational

B-Splines”) are a generalization of
the Bezier curve concept:
● NU: Non-Uniform. The knots in the knot

vector are not required to be uniformly
spaced.

● R: Rational. The spline may be defined
by rational polynomials (homogeneous
coordinates.)

● BS: B-Spline. A generalization of Bezier
splines with controllable degree.

Images from www.rhino3d.com/gallery 109

http://www.rhino3d.com/gallery

B-Splines
We’ll build our definition of a B-spline from:
● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values (“knots”)
● d = k-1 is the degree of the curve, so k is the number of control

points which influence a single interval
● Ex: a cubic (d=3) has four control points (k=4)

● There are k+n knots ti, and ti ≤ ti+1 for all ti
● Each B-spline is C(k-2) continuous:

continuity is degree minus one,
so a k=3 curve has d=2 and is C1

http://www.mikekrummhoefener.com/toy-story-char-grid/ 110

http://www.mikekrummhoefener.com/toy-story-char-grid/

B-Splines

● A B-spline curve is defined between tmin and tmax:

● Ni,k(t) is the basis function of control point Pi for
parameter k. Ni,k(t) is defined recursively:

111

B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …

112

k=1

k=2

k=3

k=4

B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0

113

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines

114

N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines

115

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of
the four basis
functions is
fully defined
(sums to one)
between
t2 (t=1.0) and
t5 (t=4.0).

+ + +

116

N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of
the three
functions is
fully defined
(sums to one)
between
t3 (t=2.0) and
t4 (t=3.0).

117

B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti
through ti+k, inclusive. So six knots → five discontinuous functions → four piecewise
linear interpolations → three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5} 118

Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform:

ti+1-ti = ti+2-ti+1 ∀ti.
● Varying the size of an interval changes the

parametric-space distribution of the weights assigned to
the control functions.

● Repeating a knot value reduces the continuity of the
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with C0
continuity.

119

Open vs Closed

● A knot vector which repeats its first and last knot
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to

force the curve to pass through the first or last
control point.

● Without this, the functions N1,k and Nn,k which
weight P1 and Pn would still be ‘ramping up’
and not yet equal to one at the first and last ti.

120

Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

121

Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to
control the curve’s proximity to the control
point.
● We want to be able to slide the curve nearer or

farther without losing continuity or introducing
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.

122

Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point
Pi=(xi, yi, zi)

becomes the homogeneous control point
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:

123

Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal

coordinates:

124

Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to

a control point by changing the corresponding weight.

125

Non-Uniform Rational B-Splines in action

Demo

126

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

References
Demo: http://geometrie.foretnik.net/files/NURBS-en.swf

● Les Piegl and Wayne Tiller, The NURBS Book, Springer

(1997)
● Alan Watt, 3D Computer Graphics, Addison Wesley

(2000)
● G. Farin, J. Hoschek, M.-S. Kim, Handbook of Computer

Aided Geometric Design, North-Holland (2002)

127

http://geometrie.foretnik.net/files/NURBS-en.swf

Further Graphics

Subdivision
Surfaces

128
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Problems with Bezier (NURBS) patches
● Joining spline patches

with Cn continuity
across an edge is
challenging.

● What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

● Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one
smoothly-deformed rectangular surface.

129

● The solution:
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of
rectangular patches.
• Applications include

CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies…

Geri’s Game, by Pixar (1997)

130

Subdivision surfaces

● Instead of ticking a parameter t along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

● Each step of refinement adds new
faces and vertices.

● The process converges to a smooth
limit surface.

(Catmull-Clark in action)131

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two
separate groups during 1978:
• Doo and Sabin found a biquadratic surface
• Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

132

Subdivision surfaces and the movies

● Pixar first demonstrated subdivision
surfaces in 1997 with Geri’s Game.
• Up until then they’d done everything in

NURBS (Toy Story, A Bug’s Life.)
• From 1999 onwards everything they did was

with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

• Two decades on, it’s all heavily customized -
creases and edges can be detailed by artists
and regions of subdivision can themselves be
dynamically subdivided

133

Useful terms
● A scheme which describes a 1D curve (even if that curve is

travelling in 3D space, or higher) is called univariate, referring to
the fact that the limit curve can be approximated by a polynomial
in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control
points is called an interpolating scheme.

● A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

Control surface for Geri’s head134

How it works

● Example: Chaikin curve subdivision (2D)
• On each edge, insert new control points at ¼ and

¾ between old vertices; delete the old points
• The limit curve is C1 everywhere (despite the poor

figure.)

135

Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will
have twice as many control points as before.
Notice the different treatment of generating odd and
even control points.
Borders (terminal points) are a special case.

←Even

←Odd

136

Notation

Chaikin can be written in vector notation as:

137

Notation
● The standard notation compresses the scheme to a kernel:

• h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of

the matrix form can be used to prove the continuity of the
subdivision limit surface.

• The details of analysis are fascinating, lengthy, and sadly
beyond the scope of this course

● The limit curve of Chaikin is a quadratic B-spline!

138

Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

139

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A +

(3/16) B +
(3/16) C +
(1/16) D

This replaces every old vertex
with four new vertices.
The limit surface is biquadratic,
C1 continuous everywhere.

P

A
B

C
D

9

140

Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

141

Catmull-Clark

● Catmull-Clark is a bivariate approximating
scheme with kernel h=(1/8)[1,4,6,4,1].
• Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge

142

Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

143

Catmull-Clark in action

144

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
145

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both

operate on quadrilateral meshes.
• All faces have four boundary edges
• All vertices have four incident edges

● What happens when the mesh contains
extraordinary vertices or faces?

• For many schemes, adaptive weights exist
which can continue to guarantee at least
some (non-zero) degree of continuity, but
not always the best possible.

● CC replaces extraordinary faces with
extraordinary vertices; DS replaces
extraordinary vertices with extraordinary
faces.

Detail of Doo-Sabin at cube
corner

146

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex
rules generalized for
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in

the one-ring:
3/2n2

● Interleaved neighbors in
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 147

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)

148

Loop subdivision

Loop subdivision in action. The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

149

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg,
Ulrich Reif, Scott
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf

150

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the
limit surface will change (see right)
● Need to include all control points from the previous

generation, which influence the limit surface in this
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 151

Continuous level of detail

For live applications (e.g. games) can compute
continuous level of detail, typically as a
function of distance:

Level 5 Level 5.2 Level 5.8 152

Bounding boxes and convex hulls for
subdivision surfaces
● The limit surface is (the weighted average of (the weighted

averages of (the weighted averages of (repeat for eternity…))))
the original control points.

● This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

● For schemes with negative weights:
• Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter

space of the absolute values of the weights.
• For a scheme with negative weights, L will exceed 1.
• Then the limit surface must lie within the convex hull of the

original control points, expanded unilaterally by a ratio of (L-1).

153

Subdivision Schemes—A partial list
● Approximating

• Quadrilateral
• (1/2)[1,2,1]
• (1/4)[1,3,3,1]

(Doo-Sabin)
• (1/8)[1,4,6,4,1]

(Catmull-Clark)
• Mid-Edge

• Triangles
• Loop

● Interpolating
• Quadrilateral

• Kobbelt
• Triangle

• Butterfly
• “√3” Subdivision

Many more exist, some much
more complex
This is a major topic of
ongoing research

154

References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control.” ACM Transactions on
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
http://www.mrl.nyu.edu/publications/subdiv-course2000/

155

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/

Global Illumination
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

156

Improving on the classic lighting model
● Soft shadows are expensive
● Shadows of transparent objects require

further coding or hacks
● Lighting off reflective objects follows

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color

bleeding, such as in the Cornell
Box—notice how the sides of the inner
cubes are shaded red and green.)

● Fundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the
two images are compared.

157

Ambient occlusion

● Ambient illumination is a blanket constant that we often add to every
illuminated element in a scene, to (inaccurately) model the way that
light scatters off all surfaces, illuminating areas not in direct lighting.

● Ambient occlusion is the technique of
adding/removing ambient light when
other objects are nearby and scattered
light wouldn’t reach the surface.

● Computing ambient occlusion is a
form of global illumination, in which
we compute the lighting of scene
elements in the context of the scene
as a whole.

Image from “ZBrush® Character Creation: Advanced
Digital Sculpting, Second Edition”, by Scott Spencer, 2011158

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)159

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)160

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)161

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)162

http://filmicgames.com/archives/6

Ambient occlusion - Theory

We can treat the background (the sky)
as a vast ambient illumination source.
● For each vertex of a surface, compute

how much background illumination
reaches the vertex by computing how
much sky it can ‘see’

● Integrate occlusion Ap over the
hemisphere around the normal at the
vertex:

● Ap occlusion at point p
● n normal at point p
● Vp,ᶫ visibility from p in direction ᶫ
● Ω integrate over area (hemisphere)

Bottom image credit: “GPU Gems 2”, nVidia, 2005. Vertices mapped
to illumination disks for hemispheric illumination mapping. 163

Ambient occlusion - Theory

● This approach is very flexible
● Also very expensive!
● To speed up computation, randomly

sample rays cast out from each
polygon or vertex (this is a
Monte-Carlo method)

● Alternatively, render the scene from
the point of view of each vertex and
count the background pixels in the
render

● Best used to pre-compute per-object
“occlusion maps”, texture maps of
shadow to overlay onto each object

● But pre-computed maps fare poorly
on animated models...

Image credit: “GPU Gems 1”, nVidia, 2004.
Top: without AO. Bottom: with AO. 164

Z-
bu

ff
er

 -
to

w
ar

ds
 th

e
ey

e

Screen Space Ambient Occlusion
(“SSAO”)

“True ambient occlusion is hard,
let’s go hacking.”

● Approximate ambient occlusion
by comparing z-buffer values in
screen space!

● Open plane = unoccluded
● Closed ‘valley’ in depth buffer =

shadowed by nearby geometry
● Multi-pass algorithm
● Runs entirely on the GPU

Image: CryEngine 2. M. Mittring, “Finding Next Gen –
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28 165

Screen Space Ambient Occlusion
1. For each visible point on a surface in the scene

(ie., each pixel), take multiple samples (typically
between 8 and 32) from nearby and map these
samples back to screen space

2. Check if the depth sampled at each neighbor is
nearer to, or further from, the scene sample point

3. If the neighbor is nearer than the scene sample
point then there is some degree of occlusion

a. Care must be taken not to occlude if the nearer
neighbor is too much nearer than the scene
sample point; this implies a separate object, much
closer to the camera

4. Sum retained occlusions, weighting with an
occlusion function

Image: StarCraft II. Advances in Real-Time Rendering in 3D
Graphics and Games - Course notes, SIGGRAPH 2008 166

0) Base Image1) Base SSAO2) Dilate Horizontal3) Dilate Vertical4) Low Pass Filter (significant blurring)

SSAO example- Uncharted 2

John Hable, GDC 2010, “Uncharted 2: HDR Lighting”
(filmicgames.com/archives/6) 167

http://filmicgames.com/archives/6

Ambient occlusion and Signed Distance
Fields

In a nutshell, SSAO tries to estimate
occlusion by asking, “how far is it to
the nearest neighboring geometry?”

With signed distance fields, this question
is almost trivial to answer.

float ambient(vec3 pt, vec3 normal) {
 float a = 1;
 int step = 0;

 for (float t = 0.01; t <= 0.1;) {
 float d = abs(getSdf(pt + t * normal));
 a = min(a, d / t);
 t += max(d, 0.01);
 }
 return a;
}

float ambient(vec3 pt, vec3 normal) {
 return abs(getSdf(pt + 0.1 * normal)) / 0.1;
}

168

Images from Cornell University’s graphics group
http://www.graphics.cornell.edu/online/research/

Radiosity
● Radiosity is an illumination method which

simulates the global dispersion and
reflection of diffuse light.
● First developed for describing spectral

heat transfer (1950s)
● Adapted to graphics in the 1980s at

Cornell University
● Radiosity is a finite-element approach to

global illumination: it breaks the scene into
many small elements (‘patches’) and
calculates the energy transfer between
them.

169

http://www.graphics.cornell.edu/online/research/

Radiosity—algorithm
● Surfaces in the scene are divided into patches, small subsections of

each polygon or object.
● For every pair of patches A, B, compute a view factor (also called a

form factor) describing how much energy from patch A reaches
patch B.
● The further apart two patches are in space or orientation, the less light

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying

more light to patches with higher relative view factors. Repeating
this step will distribute the total
light across the scene, producing
a global diffuse illumination model.

170

Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch
combined with the total light being reflected by the patch:

This forms a system of linear equations, where…
Bi is the radiosity of patch i;
Bj is the radiosity of each of the other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.

171

Radiosity—form factors
● Finding form factors can be done

procedurally or dynamically
● Can subdivide every surface into small

patches of similar size
● Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above
some threshold.

● Computing cost for a general radiosity
solution goes up as the square of the number
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be

a waste.
● Patches should ideally closely align with

lines of shadow.

172

Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor

and walls of the room are dynamically
subdivided to produce more patches
where shadow detail is higher.

Images from “Automatic
generation of node spacing
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm

(A) (B)

173

http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm

Radiosity—view factors
One equation for the view factor between
patches i, j is:

…where θi is the angle between the normal of
patch i and the line to patch j, r is the distance
and V(i,j) is the visibility from i to j (0 for
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj

174

Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a

half-cube. The scene is then ‘rendered’ from the point of view of the
patch, through the walls of the hemicube; V(i,j) is computed for each
patch based on which patches it can see (and at what percentage) in its
hemicube.

● A purer method, but more computationally expensive, uses
hemispheres.

Note: This method can be accelerated
using modern graphics hardware to
render the scene. The scene is
‘rendered’ with flat lighting, setting the
‘color’ of each object to be a pointer to
the object in memory.

175

Radiosity gallery

Teapot (wikipedia)

Image from
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation:
a Synthesis of Ray Tracing and Radiosity Methods,
John R. Wallace, Michael F. Cohen and Donald P. Greenberg
(Cornell University, 1987)

176

Shadows, refraction and caustics
● Problem: shadow ray strikes

transparent, refractive object.
● Refracted shadow ray will

now miss the light.
● This destroys the validity of

the boolean shadow test.
● Problem: light passing through

a refractive object will
sometimes form caustics (right),
artifacts where the envelope of
a collection of rays falling on
the surface is bright enough to
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and
outside of its shadow.
Photo credit: Jan Zankowski

177

Shadows, refraction and caustics

● Solutions for shadows of transparent objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping 178

http://graphics.ucsd.edu/~henrik/

Photon mapping
Photon mapping is the process
of emitting photons into a
scene and tracing their paths
probabilistically to build a
photon map, a data structure
which describes the
illumination of the scene
independently of its geometry.

This data is then combined
with ray tracing to compute the
global illumination of the
scene.

Image by Henrik Jensen (2000)

179

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1. Photon scattering

A. Photons are fired from each light source, scattered in
randomly-chosen directions. The number of photons per
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer,
folks.) Where they strike a surface they are either
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction
and energy of the photon in the photon map. The photon
map data structure must support fast insertion and fast
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters

180

Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2. Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for

specular but compute diffuse from the photon map and do
away with ambient completely.

C. Compute radiant illumination by summing the
contribution along the eye ray of all photons within a
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon
map. For speed, the caustic map is usually distinct from
the radiance map.

Image by Zack Waters

181

Photon mapping is probabilistic
This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting
equation) is simulated by randomly
sampling values from within the
integral’s domain until enough
samples average out to about the
right answer.
● This means that you’re going to be

firing millions of photons. Your
data structure is going to have to be
very space-efficient.

http://www.okino.com/conv/imp_jt.htm

182

http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic
● Initial photon direction is random. Constrained by light

shape, but random.
● What exactly happens each time a photon hits a solid also

has a random component:
● Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1. This gives a probability map:

● Choose a random value p є [0,1]. Where p falls in the
probability map of the surface determines whether the photon is
reflected, refracted or absorbed.

0 1pd ps pt
This surface would
have minimal
specular highlight.

183

Photon mapping gallery

http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

184

http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html

References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Anisotropic surface:

● A. Watt, 3D Computer Graphics - Chapter 7: Simulating light-object interaction: local reflection models
● Eurographics 2016 tutorial - D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross - BRDF Representation and

Acquisition

Ambient occlusion and SSAO:

● “GPU Gems 2”, nVidia, 2005. Vertices mapped to illumination.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html

● Mittring, M. 2007. Finding Next Gen – CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 – Advanced Real-Time
Rendering in 3D Graphics and Games
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf

● John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Radiosity:

● http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
● http://www.graphics.cornell.edu/online/research/
● Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive Radiosity.” In Computer

Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324.
● Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge University Press (2003)

Photon mapping
● Henrik Jenson, “Global Illumination using Photon Maps”: http://graphics.ucsd.edu/~henrik/
● Zack Waters, “Photon Mapping”:

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

185

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf
http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/
http://graphics.ucsd.edu/~henrik/
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

Immersion and Presence
in digital realities

186

Virtual Reality

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

187

“Cyberspace. A consensual hallucination experienced
daily by billions of legitimate operators, in every
nation, by children being taught mathematical
concepts... A graphic representation of data abstracted
from banks of every computer in the human system.
Unthinkable complexity. Lines of light ranged in the
nonspace of the mind, clusters and constellations of
data. Like city lights, receding...”

― William Gibson, Neuromancer (1984)

What is… the Matrix?

What is Virtual Reality?

188

Immersion is the art and technology of surrounding
the user with a virtual context, such that there’s
world above, below, and all around them.

Presence is the visceral reaction to a convincing
immersion experience. It’s when immersion is so
good that the body reacts instinctively to the
virtual world as though it’s the real one.

When you turn your head to look up at the attacking
enemy bombers, that’s immersion; when you can’t
stop yourself from ducking as they roar by
overhead, that’s presence.

Top: HTC Vive (Image creduit: Business Insider)
Middle: The Matrix (1999)
Bottom: Google Daydream View (2016)

The “Sword of Damocles” (1968)

189

In 1968, Harvard Professor
Ivan Sutherland, working
with his student Bob Sproull,
invented the world’s first
head-mounted display, or
HMD.

“The right way to think about
computer graphics is that the
screen is a window through which
one looks into a virtual world.
And the challenge is to makes the
world look real, sound real, feel
real and interact realistically.”

-Ivan Sutherland (1965)

Our eyes and brain compute depth cues from many
different signals:

● Binocular vision (“stereopsis”)
The brain merges two images into one with depth
○ Ocular convergence
○ Shadow stereopsis

● Perspective
Distant things are smaller

● Parallax motion and occlusion
Things moving relative to each other, or in front of each other, convey depth

● Texture, lighting and shading
We see less detail far away; shade shows shape; distant objects are fainter

● Relative size and position and connection to the ground
If we know an object’s size we can derive distance, or the reverse; if an
object is grounded, perspective on the ground anchors the object’s distance

Distance and Vision

190Image: Pere Borrell del Caso’s Escapando la Critica (“Escaping Criticism”) (1874)

191

Perspective

Ambient
shadows

Occlusion

Shadows

Image credit: Scott Murray

Murray, Boyaci, Kersten, The
representation of perceived
angular size in human
primary visual cortex, Nature
Neuroscience (2006)

Binocular display

192

Today’s VR headsets work by
presenting similar, but different,
views to each eye

Each eye sees an image of the virtual
scene from that eye’s point of view
in VR

This can be accomplished by rendering
two views to one screen (Playstation
VR, Google Daydream) or two
dedicated displays (Oculus Rift,
HTC Vive)

Top: Davis, Bryla, Benton, Oculus Rift in Action (2014)
Bottom: Oculus DK1 demo scene “Tuscanny”

Teardown of an Oculus Rift CV1

193Teardown of an Oculus Rift CV1 showing details of lenses and displays
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

Accounting for lens effects

194Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Lenses bend light: the lenses in
the VR headset warp the
image on the screen, creating
a pincushion distortion.

This is countered by first
introducing a barrel
distortion in the GPU shader
used to render the image.

The barrel-distorted image
stretches back to full size
when it’s seen through the
headset lenses.

Accelerometer and electromagnetic sensors in the headset track
the user’s orientation and acceleration. VR software
converts these values to a basis which transforms the scene.

Ex: WebVR API:
interface VRPose {

 readonly attribute Float32Array? position;

 readonly attribute Float32Array? linearVelocity;

 readonly attribute Float32Array? linearAcceleration;

 readonly attribute Float32Array? orientation;

 readonly attribute Float32Array? angularVelocity;

 readonly attribute Float32Array? angularAcceleration;

};

Sensors

195
Top: 6DoF (6 degrees of freedom) - Wikipedia
Bottom: Roll (Z), Pitch (X) and Yaw (Y) - Google Design

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-position
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearacceleration
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-orientation
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularacceleration

Sensor fusion

Problem: Even the best accelerometer can’t detect all
motion. Over a few seconds, position will drift.

Solution: Advanced headsets also track position with
separate hardware on the user’s desk or walls.

● Oculus Rift: “Constellation”, a desk-based IR
camera, tracks a pattern of IR LEDs on the headset

● HTC Vive: “base station” units track user in room
● Playstation VR: LEDs captured by PS camera

The goal is to respond in a handful of milliseconds
to any change in the user’s position or orientation,
to preserve presence.

196Top: Constellation through an IR-enabled camera (image credit: ifixit.com)
Bottom: HTC Vive room setup showing two base stations (image credit: HTC)

http://ifixit.com

Sensors - how fast is fast?

● To preserve presence, the rendered image must respond
to changes in head pose faster than the user can perceive

● That’s believed to be about 20ms, so no HMD can have a
framerate below 50hz

● Most headset display hardware has a higher framerate
○ The Rift CV1 is locked at 90hz
○ Rift software must exceed that framerate
○ Failure to do so causes ‘judder’ as frames are lost
○ Judder leads to nausea, nausea leads to hate, hate leads to the

dark side

197

Dealing with latency: sensor prediction

A key immersion improvement is to predict the future basis.
This allows software to optimize rendering.

● At time t, head pos = X, head velocity = V, head
acceleration = A

● Human heads do not accelerate very fast
● Rendering a single frame takes dt milliseconds
● At t + dt, we can predict pos = X + Vdt + ½ Adt2

● By starting to render the world from the user’s predicted
head position, when rendering is complete, it aligns with
where there head is by then (hopefully).

Ex: The WebVR API returns predicted pose by default

198

Dealing with latency: ‘timewarp’

Another technique to deal with lost frames
is asynchronous timewarp.

● Headset pose is fetched immediately before frame
display and is used to shift the frame on the display
to compensate for ill-predicted head motion

199Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Head velocity,
acceleration captured;
head pose predicted

Rendering
first eye

Begin
frame

Rendering
second
eye

Head pose captured
again to increase
accuracy (second eye)

Final head
pose
capture

Timewarp
shifts
image

Render!

Developing for VR

Dedicated SDKs
● HTC Vive
● Oculus Rift SDK

● C++
● Bindingsfor Python, Java

● Google Daydream SDK
● Android, iOS and Unity

● Playstation VR
● Playstation dev kit

200

General-purpose SDKs
● WebGL - three.js
● WebVR API

Higher-level game
development
● Unity VR

https://www.htcvive.com/us/develop_portal
http://developer.oculus.com
https://developers.google.com/vr/daydream/overview
https://www.playstation.com/en-us/develop/
https://w3c.github.io/webvr/
https://unity3d.com/unity/multiplatform/vr-ar

“Sim sickness”

The Problem:
1. Your body says, “Ah, we’re sitting still.”
2. Your eyes say, “No, we’re moving! It’s exciting!”
3. Your body says, “Woah, my inputs disagree! I must have

eaten some bad mushrooms. Better get rid of them!”
4. Antisocial behavior ensues

The causes of simulation sickness (like motion sickness, but
in reverse) are many. Severity varies between individuals;
underlying causes are poorly understood.

201

Reducing sim sickness

The cardinal rule of VR:

1. Never take head-tracking control away from the user
2. Head-tracking must match the user’s motion
3. Avoid moving the user without direct interaction
4. If you must move the user, do so in a way that doesn’t

break presence

202

The user is in control of the camera.

How can you mitigate sim sickness?

Design your UI to reduce illness
● Never mess with the field of view
● Don’t use head bob
● Don’t knock the user around
● Offer multiple forms of camera control

○ Look direction
○ Mouse + keyboard
○ Gamepad

● Try to match in-world character height
and IPD (inter-pupilary distance) to that
of the user

● Where possible, give the user a stable
in-world reference frame that moves
with them, like a vehicle or cockpit

203

Hawken, by Meteor Entertainment (2014)

Further ways to reduce sim sickness

Design your VR world to reduce illness
● Limit sidestepping, backstepping, turning; never force the user to spin
● If on foot, move at real-world speeds (1.4m/s walk, 3m/s run)
● Don’t use stairs, use ramps
● Design to scale--IPD and character height should match world scale
● Keep the horizon line consistent, static and constant
● Avoid very large moving objects which take up most of the field of view
● Use darker textures
● Avoid flickering, flashing, or high color contrasts
● Don’t put content where they have to roll their eyes to see it
● If possible, build breaks into your VR experience
● If possible, give the user an avatar; if possible, the avatar body should react

to user motion, to give an illusion of proprioception

204

Classic user interfaces in 3D

Many classic UI paradigms
will not work if you
recreate them in VR

● UI locked to sides or corners of
the screen will be distorted by
lenses and harder to see

● Side and corner positions force
the user to roll their eyes

● Floating 3D dialogs create a
virtual plane within a virtual
world, breaking presence

● Modal dialogs ‘pause’ the world
● Small text is much harder to read

in VR

205Top: EVE Online (2003)
Bottom: Team Fortress (2007)

In-world UIs are evolving

Deus Ex Human Revolution (2011) Deus Ex Mankind Divided (2016)

206

Increasingly, UI elements are being integrated into the virtual world

The best virtual UI is in-world UI

Top left: Call of Duty: Black Ops (2010) Top right: Halo 4 (2012)
Bottom left: Crysis 3 (2013) Bottom right: Batman: Arkham Knight (2015) 207

208Strike Suit Zero (2013)

http://www.youtube.com/watch?v=FYvpo_PDu4w

209Elite: Dangerous (2014)

http://www.youtube.com/watch?v=-ZvjH430C_o

Storytelling in games

The visual language of games is often
the language of movies

● Cutscenes
● Angle / reverse-angle

conversations
● Voiceover narration
● Pans
● Dissolves
● Zooms...

In VR, storytelling by moving the
camera will not work well because
the user is the camera.

210

"It's a new communications medium. What is necessary is to
develop a grammar and syntax. It's like film. When film was
invented, no one knew how to use it. But gradually, a visual
grammar was developed. Filmgoers began to understand how
the grammar was used to communicate certain things. We have
to do the same thing with this.“

Neal Stephenson, Interface, 1994

Call of Duty: Modern Warfare 3 (2012)
The player’s helicopter has been shot down; they emerge into
gameplay, transitioning smoothly from passive to active.

Drawing the user’s attention
When presenting dramatic content in

VR, you risk the user looking
away at a key moment.

● Use audio cues, movement or
changing lighting or color to
draw focus

● Use other characters in the
scene; when they all turn to look
at something, the player will too

● Design the scene to direct the
eye

● Remember that in VR, you know
when key content is in the
viewing frustum

211

 The Emperor’s New Groove (2000)

User

V
ie

w
in

g
d

ir
ec

ti
o

n

Vie
win

g d
ire

ct
io

n
Viewing direction

Animate!

Advice for a good UI
Always display relevant state—Primary application state

should be visible to the user. For an FPS shoot-em-up,
this means showing variables like ammo count and
health. Combine audio and video for key cues such as
player injury.

Use familiar context and imagery—Don’t make your users
learn specialized terms so they can use your app. If
you’re writing a surgery interface for medical training,
don’t force medical students to learn about virtual
cameras and FOVs.

Support undo/redo—Don’t penalize your users for clicking
the wrong thing. Make undoing recent actions a primary
user interface mode whenever feasible.

Design to prevent error—If you want users to enter a value
between 1 and 10 in a box, don’t ask them to type; they
could type 42. Give them a slider instead.

Build shortcuts for expert users—The feeling that you’re
becoming an expert in a system often comes from
learning its shortcuts. Make sure that you offer combos
and shortcuts that your users can learn—but don’t
require them.

Don’t require expert understanding—Visually indicate
when an action can be performed, and provide useful
data if the action will need context. If a jet fighter pilot
can drop a bomb, then somewhere on the UI should be a
little indicator of the number of bombs remaining. That
tells players that bombs are an option and how many
they’ve got. If it takes a key press to drop the bomb,
show that key on the UI.

Keep it simple—Don’t overwhelm your users with useless
information; don’t compete with yourself for space on
the screen. Always keep your UI simple. “If you can’t
explain it to a six-year-old, you don’t understand it
yourself” (attributed to Albert Einstein).

Make error messages meaningful—Don’t force users to
look up arcane error codes. If something goes wrong,
take the time to clearly say what, and more important,
what the user should do about it.

Abridged from Usability Engineering by Jakob Nielsen
(Morgan Kaufmann, 1993)

212

An unhelpful error message

Gestural interfaces

Hollywood has been training us
for a while now to expect
gestural user interfaces.

A gestural interface uses
predetermined intuitive hand
and body gestures to control
virtual representations of
material data.

Many hand position capture
devices are in development
(ex: Leap Motion)

213

214Johnny Mnemonic (1995)

http://www.youtube.com/watch?v=l0dYS2AKBN8

215Marvel’s Agents of S.H.I.E.L.D. (2013) S01 E13

http://www.youtube.com/watch?v=Gyfq0QBhPs4

References
Developing in VR

● Fundamentals of Computer Graphics, by P. Shirley, M. Ashikhmin, and S. Marschner (A. K. Peters/CRC Press, 2009)
● Computer Graphics: Principles and Practice, by J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes (Addison-Wesley Professional, 2013)
● Oculus Rift in Action, by Davis, Bryla and Benton (2014)
● Oculus Best Practices Guide - developer.oculus.com/documentation

Motion sickness/simulator sickness

● Textbook of Maritime Medicine, by the Norwegian Centre for Maritime Medicine (2013). See chapter 20, “Motion Sickness” (textbook.ncmm.no)
● Validating an Efficient Method to Quantify Motion Sickness, by B. Keshavarz and H. Hecht (2011). Human Factors: The Journal of the Human Factors

and Ergonomics Society 53.4: 415–26.
● Simulator Sickness Questionnaire, by R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal (1993). The International Journal of Aviation

Psychology 3(3): 203–20.
● Motion Sickness Susceptibility Questionnaire Revised and Its Relationship to Other Forms of Sickness, by J. F. Golding (1998). Brain Research Bulletin,

47(5): 507–16.

UI design for VR

● 3D User Interfaces: New Directions and Perspectives, by D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose…and W. Stuerzlinger. (2008).  IEEE
Computer Graphics and Applications 28(6): 20–36.

● Design and Evaluation of Mouse Cursors in a Stereoscopic Desktop Environment, by L. Schemali and E. Eisemann (2014). 3D User Interfaces (3DUI),
2014 IEEE Symposium (pp. 67-70). IEEE. Recorded talk is available at vimeo.com/91489021

● Developing Virtual Reality Games and Experiences— www.gdcvault.com/play/1020714. Presented at GDC 2014.
● Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques, by I. Poupyrev, S. Weghorst, M. Billinghurst,

and T. Ichikawa (1998). Computer Graphics Forum, 17(3): 41–52.
● Kinect Hand Detection, by G. Gallagher—video.mit.edu/watch/kinect-hand-detection-12073
● Make It So: Interaction Design Lessons from Science Fiction, by N. Shedroff and C. Noessel (Rosenfeld Media, 2012)
● Lessons learned porting Team Fortress 2 to virtual reality—media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
● Pointing at 3D Target Projections with One-Eyed and Stereo Cursors, by R. J. Teather and W. Stuerzlinger. (2013). ACM Conference on Human

Factors in Computing Systems: 159–68.
● Pointing to the future of UI, by J. Underkoffler (2010). Talk given at TED. www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture
● Selection Using a One-Eyed Cursor in a Fish Tank VR Environment, by C. Ware and K. Lowther.  (1997). ACM

Transactions on Computer-Human Interaction Journal, 4(4): 309–22.
● Usability Engineering, by J. Nielsen (Morgan Kaufmann, 1993)

216

http://developer.oculus.com/documentation
http://textbook.ncmm.no/
http://vimeo.com/91489021
http://www.gdcvault.com/play/1020714
http://video.mit.edu/watch/kinect-hand-detection-12073
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture

Appendices
Additional topics of interest in computer graphics.

These slides are not examinable.

A. Constructive Solid Geometry
B. Antialiasing
C. Procedural textures
D. Perlin noise
E. Voxels
F. Particle systems

217
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Appendix A:
Constructive Solid Geometry

Constructive Solid Geometry
(CSG) is a ray-tracing technique
which builds complicated forms
out of simple primitives,
comparable to (and more
complicated than, but also more
precise than) Signed Distance
Fields.

These primitives are combined
with the standard boolean
operations: union, intersection,
difference. CSG figure by Neil Dodgson

218

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

219

Constructive Solid Geometry

CSG surfaces are described by a binary tree,
where each leaf node is a primitive and each
non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4

220

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

A B

Ray-tracing CSG models

221

Ray-tracing CSG models

Each boolean operation can
be modeled as a state
machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).
● Union:

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

222

Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

223

Constructive Solid Geometry - References

● Jules Bloomenthal, Introduction to Implicit
Surfaces (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● MIT lecture notes:
http://groups.csail.mit.edu/graphics/classes/
6.837/F98/talecture/

224

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

225

Aliasing

-

=

226

Antialiasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely
continuous function (the color of the scene) with a finite, discrete function (the
pixels of the image).

One solution to this is super-sampling. If we fire multiple rays through each
pixel, we can average the colors
computed for every ray together
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

227Lecture note: Four printed slides removed here,
reviewing antialiasing from last year’s notes.

http://www.svi.nl/

Antialiasing with OpenGL

Antialiasing remains a challenge with
hardware-rendered graphics, but image quality
can be significantly improved through GPU
hardware.
● The simplest form of hardware

anti-aliasing is Multi-Sample
Anti-Aliasing (MSAA).

● “Render everything at higher resolution,
then down-sample the image to blur
jaggies”

● Enable MSAA in OpenGL with
glfwWindowHint(GLFW_SAMPLES, 4);

228

Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs
4x supersampled (right)
polygon edge, using
OpenGL’s built-in
supersampling support.
Images magnified 4x.

229

Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be
very limiting in high-resolution scenarios (high demand
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur
the lines’ width

3. Composite the filtered lines into the framebuffer
using alpha blending

This approach is great for polygonal models, tougher for
effects-heavy visual scenes like video games

230

Antialiasing on
the GPU

More recently, NVIDIA’s Fast
Approximate Anti-Aliasing
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those

subject to aliasing.
2. Map these to horizontal (gold) or vertical (blue) edges.
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 231

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in GLSL by the methods dFdx(F) and
dFdy(F).
● These methods return the derivative with respect to X and Y, in screen

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 232

Antialiasing texture reads with Signed
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map
instead of as pixels. This allows per-pixel smoothing at multiple distances.

233

3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest

black pixel (if white) or white pixel (if
black). Distance from white is negative.

Conventional antialiasing Signed distance field 234

Antialiasing texture reads with Signed
Distance Fields

Conventional bilinear filtering
computes a weighted average of
color, but an SDF computes a
weighted average of distances.

This means that a small step away
from the original values we find
smoother, straighter lines where
the slope of the isocline is
perpendicular to the slope of the
source data.

By smoothing the isocline of the
distance threshold, we achieve
smoother edges and nifty edge
effects.

low = 0.02; high = 0.035;

double dist =
bilinearSample(tex coords);

double t =
(dist - low) / (high - low);

return (dist < low) ? BLACK

 : (dist > high) ? WHITE

 : BLACK*(1 - t) + WHITE*(t);

Adding a
second
isocline
enables
colored
borders.235

Antialiasing - Interesting further reading

● https://people.csail.mit.edu/ericchan/articles/prefilter/
● https://developer.download.nvidia.com/assets/gamedev/fi

les/sdk/11/FXAA_WhitePaper.pdf
● http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in

-15-Slides.pdf

236

https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

Procedural texture
Instead of relying on discrete

pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

237

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the renderer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

238

Non-color textures: normal mapping

239

Procedural texturing in the
fragment shader

(Code truncated for brevity--check out the
source on github for how I did the curved
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
 bool isOutsideFace = (length(position - CENTER) > 1);
 bool isEye = (length(position - LEFT_EYE) < 0.1)
 || (length(position - RIGHT_EYE) < 0.1);
 bool isMouth = (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)
 ? BLACK : YELLOW;
 fragmentColor = vec4(color, 1.0);
}

240

Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

241

Perlin Noise

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 242

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in

space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

243

Perlin noise
Perlin noise (invented by Ken Perlin) is a method for

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 244

http://www.noisemachine.com/talk1/

Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at

integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html245

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2
For each of the four corners, take the dot product of the

random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

246

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.

Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

247

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html

248

https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Voxels and volume rendering

A voxel (“volume pixel”) is a cube in space
with a given color; like a 3D pixel.

● Voxels are often used for medical
imaging, terrain, scanning and model
reconstruction, and other very large
datasets.

● Voxels usually contain color but could
contain other data as well—flow rates (in
medical imaging), density functions
(analogous to implicit surface modeling),
lighting data, surface normals, 3D texture
coordinates, etc.

● Often the goal is to render the voxel data
directly, not to polygonalize it.

Volume ray casting
If speed can be sacrificed for accuracy,
render voxels with volume ray casting:

● Fire a ray through each pixel;
● Sample the voxel data along the ray,

computing the weighted average (trilinear
filter) of the contributions to the ray of
each voxel it passes through or near;

● Compute surface gradient from of each
voxel from local sampling; generate
surface normals; compute lighting with
the standard lighting equation;

● ‘Paint’ the ray from back to front,
occluding more distant voxels with nearer
voxels; this gives hidden-surface removal
and easy support for transparency.

The steps of volume rendering; a volume ray-cast skull.
Images from wikipedia.

Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit,

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere
between eight (in 3d) voxel centers.
Weight the color of the sample by the
inverse of its distance from the center
of each voxel.

Reasonably fast voxels

If speed is of the essence, cast your
rays but stop at the first opaque
voxel.

● Store precomputed lighting
directly in the voxel

● Works for diffuse and ambient
but not specular

● Popular technique for video
games (e.g. Comanche →)

Another clever trick: store voxels
in a sparse voxel octree.

● Watch for it in id’s
next-generation engine…

Sparse Voxel Octree Ray-Casting, Cyril Crassin

Comanche Gold, NovaLogic Inc (1998)

Ludicrously fast voxels

If speed is essential (like if, say, you’re
writing a video game in 1992) and you
know that your terrain can be
represented as a height-map (ie., without
overhangs), replace ray-casting with
‘column’-casting and use a “Y-buffer”:

● Draw from front to back, drawing
columns of pixels from the bottom of
the screen up. For each pixel in
receding order, track the current max y
height painted and only draw new pixels
above that y. Anything shorter must be
behind something that’s nearer, and it’s
shorter; so don’t draw it.

Depth

D e p
 t h

References
Voxels:
J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for Direct Volume
Rendering, Computer Graphics, 35(4):275-284,July 1991.
http://en.wikipedia.org/wiki/Volume_ray_casting

http://en.wikipedia.org/wiki/Volume_ray_casting

Particle systems
Particle systems are a monte-carlo style
technique which uses thousands (or
millions) or tiny graphical artefacts to
create large-scale visual effects.

Particle systems are used for hair, fire,
smoke, water, clouds, explosions,
energy glows, in-game special effects
and much more.

The basic idea:
“If lots of little dots all do something
the same way, our brains will see the
thing they do and not the dots doing it.”

A particle system
created with 3dengfx,
from wikipedia.

Screenshot from the
game Command and
Conquer 3 (2007) by
Electronic Arts; the
“lasers” are particle
effects.

http://en.wikipedia.org/wiki/Particle_system

History of particle systems

1962: Ships explode into
pixel clouds in
“Spacewar!”, the 2nd
video game ever.
1978: Ships explode into
broken lines in
“Asteroid”.
1982: The Genesis Effect
in “Star Trek II: The
Wrath of Khan”.

Fanboy note: OMG. You can play the original Spacewar!
at http://spacewar.oversigma.com/ -- the actual original
game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/

“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g

Particle systems

How it works:
● Particles are generated from an emitter.

○ Emitter position and orientation are specified discretely;
○ Emitter rate, direction, flow, etc are often specified as a bounded

random range (monte carlo)
● Time ticks; at each tick, particles move.

○ New particles are generated; expired particles are deleted
○ Forces (gravity, wind, etc) accelerate each particle
○ Acceleration changes velocity
○ Velocity changes position

● Particles are rendered.

Particle systems — emission

Each frame, your emitter will generate
new particles.
Here you have two choices:

● Constrain the average number of particles
generated per frame:

○ # new particles = average # particles per frame +
rand() * variance

● Constrain the average number of particles per
screen area:

○ # new particles = average # particles per area +
rand() * variance * screen area

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)

Particle systems — integration

Each new particle will have at
least the following attributes:

● initial position
● initial velocity (speed and

direction)

You now have a choice of
integration technique:

● Evaluate the particles at
arbitrary time t as a
closed-form equation for a
stateless system.

● Or, use iterative (numerical)
integration:

○ Euler integration
○ Verlet integration
○ Runge-Kutta integration

Particle systems — two integration shortcuts:

Closed-form function:
● Represent every particle as a

parametric equation; store only
the initial position p0, initial
velocity v0, and some fixed
acceleration (such as gravity g.)

● p(t)=p0+v0t+½gt2

No storage of state
● Very limited possibility of

interaction
● Best for water, projectiles,

etc—non-responsive particles.

Discrete integration:
● Remember your

physics—integrate
acceleration to get velocity:

○ v’=v + a •∆t
● Integrate velocity to get

position:
○ p’=p + v •∆t

● Collapse the two, integrate
acceleration to position:

○ p’’=2p’-p + a •∆t2

Timestep must be
nigh-constant; collisions are
hard.

Particle systems—rendering

Can render particles as points, textured polys, or
primitive geometry

● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make

pretty good fire, smoke, etc
Transitioning one particle type to another
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter for
‘splash’ particles on impact

Particles can be the force sources for a
blobby model implicit surface

● This is sometimes an effective way to
simulate liquids

nvidia

Hagit Schechter
http://www.cs.ubc.ca/~hagitsch/Researc
h/

References
Particle Systems:
William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy
Objects”, Computer Graphics 17:3 pp. 359-376, 1983 (SIGGRAPH 83).
Lutz Latta, Building a Million Particle System,
http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf , 2004
http://en.wikipedia.org/wiki/Particle_system

http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf
http://en.wikipedia.org/wiki/Particle_system

